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Abstract

String theory is an attempt to unify all forces of nature into a single mathematical framework.
Particles are no longer point particles as in the standard model and its extensions, but are strings
or D-branes in higher dimensions. Leonard Susskind from the Stanford University, who was himself
involved in the development of string theory, held lectures in 2010 covering this topic. His lectures
were available on YouTube at the time this transcript has been assembled and may as “String Theory
and M-Theory” still be available today.

1 Introduction

1.1 The Historical Origins

String theory came initially from hadron theory with protons, neutrons and especially mesons, and it had
nothing to do with gravity at that time when it was even not clear whether protons and neutrons consist
of quarks and get connected by gluons. What was known around 1970 was that the number of particles
states was large. When plotting the squared mass m2 against angular momentum in so-called Regge
plots, there were the nucleons with spin 1

2 , a next particle with spin 3
2 and so on in steps of fermionic

spins which were all on a straight line. This worked fine for all known hadrons with half spin. Also the
mesons with integer spin appeared on one straight line. These straight lines are called Regge trajectories.
The message that should have been taken from this fact and has been taken later, was that these particles
must be composite particles.

Experiments with pion-pion scattering show that two pions can build
a ρ-meson which will later decay into two pions again. Because of
the principles of quantum field theory, this Feynman diagram can be
turned by ninety degrees such that now two pions exchange a ρ-meson.
However, when a ρ-meson can participate in these two processes, also
the next excited state on the Regge trajectory can do that. There
was something very peculiar going on, because when one adds up
all the first Feynman diagrams on the left in the figure, one gets
the experimentally found result, and when one added all the second
Feynman diagrams turned ninety degrees on the right, one also gets the same result. This contradicted
quantum field theory, because one should add both sets of Feynman diagrams and not only one.

When drawing the diagram in the figure on the left side, one can slice it symmetrically in
two ways through its middle. Cutting horizontally gives the Feynman diagrams on the
left side of the above figure and cutting it vertically gives the other Feynman diagram
on the right side of the above figure. The next step was an ingredient just added for
fun by asking the question what is holding the quarks together. The answer was that it
may be something inside the four curves representing the quarks and antiquarks. There
is an antiquark on the left side and a quark on the right side and something bridging
between them, and this something – a string – is one-dimensional and connects the
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antiquark and the quark. This was a kind of starting point of string theory. It is not exactly where it
came from, because different people thought about this in different ways. One of the consequences of the
early string theory was, that if a hadron was a string with a quark and an antiquark attached to it, it
can spin and have angular momentum.

The area in the above figure between the four curves of the quarks and antiquarks replaces the world line
in the Feynman diagrams and is called a world sheet. This terminology is today standard and seems to
have been coined by Professor Susskind himself. Horizontal cuts through the world sheet show the string
standing still while inclining cuts correspond to strings in motion. A string standing still means that its
center of mass is standing still, because strings wiggle a lot.

1.2 Current View

The present understanding today is that a gluon field is like a Maxwell field. The quarks are like poles
of a bar magnet, and there are no monopoles. There are lines of flux spreading out from the two poles,
and there may be a reason why the lines of flux build a narrow tube between the two poles. The current
understanding of the connection between gluons and these strings goes as follows. Fields in quantum
mechanics can be described either as particles or as fields. In the field description, the gluon field between
a quark and antiquark would look like the field between two particles with opposite electric charge. In
the case of quantum electrodynamics, the lines spread out and the field diminishes as one separates the
charges. The non-linearities in quantum chromodynamics causes these lines to attract in a certain way,
and the effect of it is that the flux lines form strings. As one pulls the quark and antiquark apart, the
lines of flux do not spread out but get longer and longer, and these tubes can be seen as made out of
gluons. Stretching a rubber band does not change the number of molecules and it will break at a certain
time, but one can imagine a rubber band that whenever a gap appears between two molecules as one
stretches it a new molecule is inserted in between. Such a rubber band can be stretched forever without
breaking it. That is the nature of the gluon field between a quark and an antiquark. The energy from
separating quark and antiquark goes into creating more and more gluons.

Because of these considerations, physicists started exploring the mathematics of strings and how they
interact such that the physical laws of interacting hadrons result. Their thoughts took place in a scale of
the size of a proton. This is large compared with the scale of quantum gravity which takes place in the
order of a Planck length. It is possibly an accidental fact that the mathematics of string theory covers
both cases because they are related to completely different length scales. The initial ideas of string theory
were promising and are still promising, but things did not come out completely right for reasons which
are in hindsight fairly clear. The mathematics was not quite right to study hadrons but was right for
gravity. One kept getting particles with zero mass and spin two, but nobody wanted a graviton because
researchers were looking for hadrons. Thus, maybe this is a theory of gravity and not of hadrons. Today,
there is a string theory for hadrons which does work, but it is a little bit different.

1.3 Relativistic and Non-Relativistic Kinematics

The energy of a particle non-relativistically is E = P 2/2m, but one might add a constant term for the
binding energy or the energy just because the particle is there. This binding energy does not depend on
the motion, but it may vary from particle to particle. The total energy of a system is E =

∑
P 2
i /2mi+Bi.

Relativistically, this constant energy would naturally be the energy when the particle is standing still,
and the total energy of a system is E =

∑√
P 2
i c

2 +m2
i c

4. The energy of one particle can be written as

E = mc2
√

1 +
p2c2

m2c4
≈ mc2 +

P 2c2

2m2c4
mc2 = mc2 +

P 2

2m

by expanding the square root. Thus, the non-relativistic formula is a good approximation of the relativistic
formula, but only when all particles move slowly compared to the speed of light.

There is an approach in which non-relativistic physics is an exact description of relativistic physics. It
used to be called the infinite momentum frame and is now called the light-cone frame. Instead of looking
at a system in its restframe, one takes a frame in fast motion such that it has a huge momentum along
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one axis. The energy is E =
√
P 2 +m2 =

√
P 2
x + P 2

y + P 2
z +m2 with c = 1. If Pz is huge, then Px, Py

and m are fixed and much smaller than Pz such that one can write

E = Pz

√
1 +

P 2
x + P 2

y +m2

P 2
z

≈ Pz

(
1 +

P 2
x + P 2

y +m2

2P 2
z

)
E =

∑
i

Pzi +
∑
i

(
P 2
xi + P 2

yi

2Pzi
+

m2
i

2Pzi

)

for one particle or a system, respectively. The first sum for the system does not change and can be
dropped because only differences of energy are important. In quantum mechanics, E is the Hermitian
operator H which is as the partial derivative of t times i~ associated with time evolution. If the energy
of a system is very small, changes take place very slowly. Thus, the faster a system is, the slower are
changes because of time dilatation which rescales time. The first term in the second sum is P 2/2Pzi . This
looks very similar to the non-relativistic case with P 2/2m except that P is here the momentum in the
xy-plane, and the momentum along the z-axis has taken the place of the mass m. Mass is inertia, and the
momentum along the z-axis is functioning as a kind of inertia with respect to forces in the perpendicular
directions. Relativistically this is true, because a given source perpendicular to the direction of motion
produces a smaller acceleration the larger the momentum. The second term in the second sum plays
the role of the binding energy because it is independent of the state of motion in the xy-plane or the
projection of the motion into the xy-plane, and it can be seen as internal energy.

This is very useful when studying particle dynamics and absolutely central to studying strings. This is
the reason why string theory often describes a string non-relativistically. A non-relativistic string is a
collection of point particles where the point particles get more and more continuous and where all of them
are moving non-relativistically in the plane perpendicular to a relativistic motion of the whole string. As
a postulate one can use strings by applying the two-dimensional analogy with non-relativistic physics to
explore those strings as if they were conventional non-relativistic objects similar to stretchable rubber
bands which can move, which can flap, and which can do everything an ideal rubber band can do. A
string can be close or open, and an open string has two ends similar to a cut rubber band. There may or
may not be something interesting attached to the ends, but here only the string itself is considered.

2 The Mathematics of Open Strings

2.1 The Energy

A string – here the string is assumed to be an open string – is a collection of point particles, and one takes
limits. The mass of each point particle goes to zero, and the number of point particle goes to infinity.
The energy is proportional to the kinetic energy and can be written as E = m

∑
(ẋ2i + ẏ2i )/2 where all

points have equal mass. There must be also interactions, and the points are attracting each other because
otherwise they would fly apart. Thus, in addition to the points one has to insert little springs between
the points to connect them, and a string can be seen as little balls with springs in between. The energy
together with these interactions is E = m

∑(
(ẋ2i + ẏ2i )/2 + k(xi − xi+1)2/2 and contains kinetic energy

as a first term and Hooke’s law as the second term.

To go to the limit, one makes the string denser and denser, the mass smaller and smaller, and the spring
constant bigger and bigger. (The spring constant must become bigger to keep the flexibility of the string.)
In the end, one gets an integral instead of the sum, and the integral∫ π

0

dσ

[
Ẋ2(σ)

2
+

1

2

(
∂X

∂σ

)2
]

goes from σ = 0 to σ = π, where 0 is one end of the string and π the other end. The scale from 0 to π is
obviously arbitrary and could have been chosen differently, but it is useful to pick π for the length of the
string because a closed string will then have length 2π. The mass m has been included into the first term
which corresponds to the kinetic energy and the spring constant into the second term which corresponds
to the potential energy, and X contains the two spatial coordinates x and y in the xy-plane. This is the
conventional energy of a vibrating string, and the Lagrangian L is the integrals with the kinetic energy
minus the potential energy – the internal binding energy – as usual.
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The string with its point masses and springs is a particle. All the vibrations and other motions of the
quarks in a proton, for example, are vibrations and other motions of the strings. The center of mass of the
string is interpreted as the position of the particle. The relative stretching and the relative vibrations are
internal energy. This internal energy should not be related to the mass m, but to the squared mass m2

of the entire assembly of the constituents of the string. If these constituents are adding up to something
one would call a particle, this particle has a mass squared which is the sum of all the internal energies
inside the particle. There is no motion of the string in the xy-plane and the string is therefore at rest in
this plane except for vibrations and wiggling of the constituents. There are same factors of the speed of
light which has been set to 1.

Another fact is that a string is not so different than a spring. If one looks at the spectrum of energies of
a string then it is pretty much quantized the same way as a collection of springs. Springs have quantized
energies which are – similar to the harmonic oscillator – multiples of something. So far, only classical
physics and relativity theory have been used for the calculations, but the total mass squared of the string
must be quantized as soon as quantum mechanics is introduced as well.

If one is stretching out the string such that it has length L, then the contribution of ∂X/∂σ is L/π and is
proportional to the length L. The contribution of the whole term is therefore proportional to L2. Because
this is mass squared and length squared, by boosting the thing one got from L to L2 and from m to m2,
and the restmass m is proportional to the length L. In the restframe it does not look like a Hooke’s law
at all. It looks like a string whose energy is proportional to its length. This fits with the picture of the
lines of flux connecting quarks and antiquarks.

One can also imagine long lines of magnetic flux that is uniform along the tubes, and the energy density
is therefore uniform along them which makes the energy proportional to the length. Superconductors
have the property of repelling the magnetic field and pushing the magnetic field away. If one pushes a
magnetic field, the lines of flux are squeezed into a narrow tubelike string which is called a fluxoid or a
superconducting flux line, but a magnetic flux line and not an electric flux line. A gedankenexperiment
shows how one could – at least theoretically – create such tubes in a superconductor with two magnetic
monopoles, which may exist although they have not yet been detected, but could be simulated. Such a
string would have uniform energy density, and the total energy would be proportional to the length of
the string. In a superconductor, the superconducting condensate is made out of electric charge and it
causes confinement of the magnetic charge. In quantum chromodynamics, quarks are confined, and there
exists a kind of chromodynamic monopoles.

The flux lines between quarks and antiquarks which build tubes with uniform energy density can be
seen as uniform lines of particles, and new particles get created to fill the gaps when stretching the
flux lines. There are two kinds of strings. One follows the Hooke’s law as these strings in the infinite
momentum frame where the energy is proportional to L2, and the other behaves like flux tubes with
energy proportional to the length L such as the tubes between quarks and antiquarks.

2.2 Some Mathematical Preliminaries

The first topic is repetition of a little bit of calculus. Func-
tions in string theory are usually function X(σ) where σ
goes from 0 to π. A function – assumed to be smooth –
can be approximated in discrete steps, and these steps can
be made finer and finer. The discrete points of the function
values are Xi where i ∈ {1, ..., N}. With ∆σ = π/N and
∆X = Xi −Xi−1 ≈ ∂X

∂σ ∆σ, the limit

∆σ
∑
i

Xi →
∫ π

0

X(σ) dσ

leads to the integral.

If the function is a continuous function from 0 to π with certain boundary conditions,
one can apply Fourier analysis and expand it by an infinite series of sine and cosine
functions. However, there are additional boundary conditions needed which are called:
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(a) Dirichlet boundary conditions where the function is zero at 0 and π
(b) Neumann boundary conditions where the first derivative is zero at 0 and π

The Dirichlet boundary conditions are used to describe, for example, a violin string
whose ends are held fixed. The Neumann boundary conditions with ∂X/∂σ zero at 0
and π are used to describe, for example, organ pipes. Both kinds of functions allow Fourier decomposition,
which is

X(σ) =

∞∑
n=1

Xn sin(nσ) X(σ) =

∞∑
n=0

Xn cos(nσ) (2.1)

for functions with Dirichlet boundary conditions on the left side shown in figure (a) and Neumann
boundary conditions on the right side in figure (b), respectively. The sum on the left side starts from 1
and the one on the right side starts from 0 because sin(0) = 0 but cos(0) 6= 0. The derivative of a function
with Dirichlet boundary conditions has Neumann boundary conditions and vice versa. The integral is

∫ π

0

cos(nσ) cos(mσ)dσ =


0 if n 6= m

π/2 if n = m 6= 0

π if n = m = 0

for the case of the Neumann boundary conditions.

The harmonic oscillator classically with the displacement X and units in which the mass m is one has
the kinetic energy Ẋ2/2 and the potential energy 1

2kX
2 where the spring constant and the frequence are

related by k = ω2 because of the selection of units with m = 1. The energy E and the Lagrangian L are

E =
Ẋ2

2
+
ω2

2
X2 L =

Ẋ2

2
− ω2

2
X2

classically, and in quantum mechanics, the energy is quantized.

2.3 Difference Between Particles, Strings and Other Objects

Particles and strings are not the same. Strings consist of particles, but particles can also be strings.
Particles have a location, but no particle is known to be a point. Even the electron is not a point particle.
If one could look at it through a powerful microscope, one would see that the electron has some fuzz
around it, and that fuzz would be virtual photons and so on. Certainly the protons are not points but
are big, gigantic objects. A particle is not a point particle and can be made out of things. Even the
photon is not a point particle because it is also surrounded be virtual photons, and a photon can split in
a pair of electron and positron.

A box full of gas with many particles – or a cup of coffee – has a mass and location which is the position of
the center of mass. The question is why is it not called a particle. The difference between what physicists
call a particle and a highly composite object such as a cup of coffee has to do with the energy spectrum.
Energy is equal to mass, and the difference has to do with the mass spectrum. The electron has a unique
mass. One can add energy to the cup of coffee by shaking it, and energy is mass. With electrons however,
there is nothing one can do to increase the mass of an electron, at least not in the laboratory at present.
Today it is not possible to excite an electron into a state of higher mass. The proton has excited states,
but they are pretty discretely different than the proton itself. It takes a couple of 100 GeV to spin up
a proton or to cause it to oscillate. There is a kind of isolation of energy or mass. For a cup of coffee
at zero Kelvin the next excited state is so close that one cannot distinguish it as a separate individual
quantum state. There are zillions of excited states near by which are practically creating a continuum of
energy levels. This is the difference between a particle and a mush.

The next question is whether a quantum string is a particle or not. This depends on the excitation
spectrum of the energy levels above the ground state. If they are well separated for some reason, then
it will behave like a particle. If they are extremely close together such that the experiment cannot
distinguish them, then it would not behave like a particle. The energy that it takes to perturb a proton is
a couple of 100 MeV or about 40% of its own mass, and that is pretty significant. For the kind of strings
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discussed there, this value is in the order of a Planck mass which is a huge mass from an experimental
point of view. There is no hope to produce these excitations in the laboratory. That is why physicists
call strings particles.

2.4 Model of a Relativistic Open String

The interesting point of the strings is that it is enough to know their projection onto the xy-plane when
boosting the system in the z-direction. Thus, the light-cone frame with

E = Pz +
P 2
x + P 2

y +m2

2P 2
z

(E − Pz)Pz =
P 2
x + P 2

y

2
+
m2

2
(2.2)

is useful. The value E − Pz is just the energy, because only energy differences are important, and the
factor Pz in the right equation of (2.2) on the left side of the equal sign rescales the time due to time
dilatation. Thus, the Hamiltonia H or the energy function (E − Pz)Pz keeps track of the motion in the
xy-plane and the internal motions. This is very non-relativistic, but the term responsible for the internal
motion is not proportional to the mass m but to m2.

The model of a relativistic string looks as in the figure on the right side that is wiggling
around, moving, stretching and doing what strings can do in the two dimensions of the
xy-plane which is perpendicular to the boosted motion of the the light-cone frame. The
string is assumed to be composed of many mass point and springs. If N is the number
of mass points, N − 1 is the number of springs between them.

The energy of the string composed of these mass points and springs is

E =
∑(

µ
Ẋ2
i + Ẏ 2

i

2
+ κ

∆X2
i + ∆Y 2

i

2

)
(2.3)

with the kinetic energy containing µ = 1
N on the left side and the potential energy containing the spring

constant κ = N
π2 on the right side. Going to the limit where µ becomes zero, N becomes infinity, and κ

gets bigger and bigger, leads to the integral

E =
1

2π

∫ π

0

((
∂X

∂τ

)2

+

(
∂Y

∂τ

)2

+

(
∂X

∂σ

)2

+

(
∂Y

∂σ

)2
)
dσ (2.4)

with the conveniently but arbitrarily chosen boundaries 0 and π such that ∆σ = π
N and with the proper

time τ . The value µ is the non-relativistic analog mass such that its total non-relativistic analog mass
is one. Therefore, this is a string with analog mass one. The spring constant of the composite string
is smaller than the one of the individual stiff springs. The units have been selected such that further
calculations become easier.

The energy E in (2.4) looks like a simple wave field and would satisfy a wave equation. If a wave moves
on the string and comes to one of the ends, it will bounce off with either the Dirichlet or the Neumann
boundary conditions. With Dirichlet boundary conditions, the wave flips to the other side, and with
Neumann boundary conditions, it just gets reflected.

Newton’s laws applied to the mass points determine the boundary conditions. A mass point is pulled by
the springs from left and right except for the two mass points at the two ends of the string. The last mass
point with number N is connected to the mass point with number N − 1 through a spring. The force
acting on the mass point number N is according to Hooke’s law proportional to the distance between the
two mass points and this is ∆X in the X-direction. The spring constant is very large and is proportional
to N . Thus, the force is in the order of N ∂X

∂σ ∆σ. Because ∆σ = π
N , the factors N cancel and the force

is proportional to ∂X
∂σ , and this is the amount in which the string is stretched. If ∂X

∂σ = 0 then the two
mass points number N and N − 1 are on top of each other. If it is not zero, there is a gap between the
two mass points. According to Newton’s laws, the force is F = µẌ where µ is the analog mass of one
mass point which is 1

N . This means that Ẍ is proportional to N ∂X
∂σ which goes to infinity when N gets

larger and larger. Thus, the Neumann boundary condition is the right boundary condition.
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2.5 Quantum Mechanics of Open Strings

The limit of the string modeled as a collection of mass points and springs with the Lagrangian for the
whole string and the Neumann boundary condition for the two ends

L =
1

2π

∫ π

0

((
∂X

∂τ

)2

+

(
∂Y

∂τ

)2

−
(
∂X

∂σ

)2

−
(
∂Y

∂σ

)2
)
dσ

∂X

∂σ
=
∂Y

∂σ
= 0 (2.5)

determines the physics of an open string.

Because X and Y are functions of σ going from 0 to π, they can be expanded into series of cosines. This
gives

X(σ, τ) =

∞∑
n=0

Xn(τ) cos(nσ) Y (σ, τ) =

∞∑
n=0

Yn(τ) cos(nσ) (2.6)

according to (2.1) where Xn and Yn are time-dependent. The first term in the Lagrangian becomes

1

2π

∫ π

0

(
∂X

∂τ

)2

dσ =
1

2π

( ∞∑
m=0

∞∑
n=0

ẊmẊn

∫ π

0

cos(mσ) cos(nσ) dσ

)
=
Ẋ0

2
+

1

4

∞∑
n=1

Ẋ2
n

where X0 is the average position making it the center of mass position. The term of the Lagrangian
corresponding to the kinetic energy of the whole string is just the kinetic energy of the center of mass
plus the internal wiggling represented by the sum. The second term in the Lagrangian becomes

1

2π

∫ π

0

(
∂X

∂σ

)2

dσ =
1

2π

( ∞∑
m=1

∞∑
n=1

mnXmXn

∫ π

0

sin(mσ) sin(nσ) dσ

)
=

1

4

∞∑
n=1

n2X2
n

such that the whole Lagrangian from (2.5) becomes

L =
Ẋ0

2
+

1

4

∞∑
n=1

((
Ẋ2
n + Ẏ 2

n

)
− n2

(
X2
n + Y 2

n

))
(2.7)

which shows that this is the Lagrangian of two harmonic oscillators, one in X and one in Y , for each n
from 1 to∞. The different harmonic oscillators are not coupled with each other such that this is the sum
of an infinite number of independent harmonic oscillators where the frequency of the n-th oscillator in X
and Y is n. For n = 0, there is no restoring force because the center of mass can move arbitrarily, and
for n ≥ 1, there is kinetic energy and potential energy according to Hooke’s law with a restoring force.
The sum of kinetic and potential energy

∞∑
n=1

((
Ẋ2
n + Ẏ 2

n

)
+ n2

(
X2
n + Y 2

n

))
in the energy which corresponds to the internal wiggling is what has to be associated with the m2 in (2.2).
The internal energy is the square of the mass in the light-cone frame.

By combining harmonic oscillators in X and Y , harmonic oscillators along different axes can be created.
There are different energy level starting from the ground state |0〉 with no oscillator excited. This is
not the vacuum, but a single string with no excitations. It has, as an ordinary harmonic oscillator of
quantum mechanics, a gap to the next energy level, and it is therefore a particle.

The energy of a harmonic oscillator is ~ times the frequency ω times the number of quanta. Thus, the
first excited energy level is one times ~ either in X-direction or in Y -direction. The second energy level
above the ground state is two quanta for the first oscillator in X-direction or Y -direction or one in each
direction, but one can also excite the second oscillator in X-direction or in Y -direction.

The quantum mechanical Hamiltonian is H = P2
n + n2X2

n/4 = (Pn + inXn/2)(Pn − inXn/2). The
creation and annihilation operators have to be normalized because of [a−, a+] = 1 for creation and
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annihilation operators, [Xn,Pn] = i for location and momentum, and [Pn + inXn/2,Pn − inXn/2] = n
for the two operators building H as a product all with ~ set to one. The resulting operators are

a−n =

√
n

2
Xn +

i√
n
Pn a+n =

√
n

2
Xn −

i√
n
Pn

in X-direction and similarly for the operators b±n in Y -direction. Adding a+n and a−n as well as b+n and
b−n , respectively, gives

Xn =
a+n + a−n√

n
Yn =

b+n + b−n√
n

for the locations. One can write the Fourier expansions using (2.6) therefore in the form

X(σ, τ) =
∑
n

a+n + a−n√
n

cos(nσ) Y(σ) =
∑
n

b+n + b−n√
n

cos(nσ) (2.8)

as quantum mechanical operators.

2.6 Spin of Particles With and Without Mass

A particle with spin j has 2j + 1 states, but massless particles are special. A massless particle with spin
0 has only one state as also have particles with mass, but particles with spin 1, spin 3 and so on have all
two states instead of three, five and so on. The question is how this can be consistent. Any particle with
spin not zero – massless or with mass – has a maximum and a minimum spin in the direction of motion.
Right-handed spin in the direction of motion is considered positive and left-handed spin in the direction
of motion is considered negative. If one direction of spin exists also the other direction must be there
because of reflection symmetry. A particle with mass can be brought to rest with a spin in the former
direction of motion. But if it has spin in this direction, it must also have spin in a direction perpendicular
to this axis. Thus, a particle with mass and spin 1 must have all three spin states, but a massless particle
cannot be brought to rest. Any Lorentz transformation will leave it with the speed of light.

Polarization of light is just either left-handed spin, right-handed spin or linear polarization which is
a superposition of the two spin states. The difference between no spin and a superposition of both
possible spin states is that there is no spin in the average but it is either spin state when measured.
The polarization is always perpendicular to the direction of motion, and this means that it is transverse.
The Maxwell equations state that the electric and the magnetic field – and therefore the polarization –
are perpendicular to the direction of motion. If the photon travels in the z-direction, linear polarization
can be either in the x-direction which can be described as state |x〉 or in the y-direction which can be
described as state |y〉. Right-handed polarization is then |r〉 = |x〉+ i |y〉 and left-handed polarization is
|l〉 = |x〉 − i |y〉. A circularly polarized photon is a superposition of the two linearly polarized states.

Gravitons are particles with spin 2, and they are also massless. They have therefore only two states. A
graviton moving down an axis with maximal angular momentum which is two units of angular momentum
is roughly speaking – and this is a good analogy – mathematically the same as two photons each with
one unit of angular momentum moving along the same axes. One can imagine to take two photons, to
stick them together and to let them move down the z-axis. They can both be circulating to the right
and have two positive units of angular momentum, they can both be circulating to the left and also have
two negative units of angular momentum, and they can be circulating in different directions. The first
two possibilities correspond to the two states of the graviton, but the third possibility is not possible for
gravitons. Thus, a particle with spin 2 can be imagined as two particles with spin 1 being in the same
state. Gravitons are not two photons, but for their spin, this is a good analogy.

2.7 The Spectrum of Open Strings

If one adds up all energy of a string, one gets the square of the mass and not the mass. An open string
at rest and therefore not moving in the perpendicular direction at all is just a collection of harmonic
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oscillators, and one can determine their states. The ground state |0〉 is the state for which |a−n |0〉 = 0
and |b−n |0〉 = 0 for all n, and it is the state where no oscillator is excited. The energy EGS of the ground
state is m2

0. To get to the next energy state, either a+1 |0〉 or b+1 |0〉 or any linear combination of them can
be used, and the energy is m2

0 + 1. Using (a+1 ± ib
+
1 ) |0〉 gives circular polarization because of the vector

character of the particle. There are only the two states a+1 |0〉 and b+1 |0〉 but no third state. That means
that there is no third polarization state. Only one conclusion is consistent with Lorentz invariance and
this is that the two objects a+1 |0〉 and b+1 |0〉 must be massless. They must be like the massless photon.
The problem is that m2

0 + 1 must therefore be zero and the ground state |0〉 would get imaginary mass.
An object with negative mass squared is called a tachyon and moves faster than the speed of light, but
this is not the end of string theory because there are many string theories without tachyons.

For ordinary non-relativistic particles the relations E(P ) = P 2/2m and ∂E/∂P = P/m = v hold. This
is actually a property of waves with its group velocity because E can be replaced by ω and P by k.
Relativistically, these relations are E = Pc for a massless particle, and, with c set to one, E =

√
P 2 +m2

for particles with mass. For the massless particle, the relation ∂E/∂P = c is obviously the velocity, and
for the particle with mass, ∂E/∂P = P/

√
P 2 +m2 is less than 1 which states that particles with mass

move with a speed less than the speed of light. If the square of the mass is negative, the particle moves
faster than the speed of light. That gave the tachyons their name.

What a tachyon really means is not that signals can be faster than the speed of light but that the vacuum
is unstable and that something can happen that destabilizes the system. With the speed of light set to
one, a simple wave equation ∂2Φ/∂x2 = ∂2Φ/∂t2 which is equivalent to ω2 = k2 or ω = k has waves as
solution moving with the speed of light. Adding a mass term giving −m2Φ + ∂2Φ/∂x2 = ∂2Φ/∂t2 leads
to the energy

1

2

(
∂Φ

∂t

)2

+
1

2

(
∂Φ

∂x

)2

+
m2

2
Φ2

of the wave. Increasing Φ would increase the last term with the mass, and therefore would increase the
energy. The field would start to oscillate when one displaces it a little bit. It costs energy to increase Φ,
and it would start to swing back. If m2 is negative, this would turn the potential upside down and create
an instability of the vacuum Φ = 0. If the field is exactly balanced everywhere and it starts falling off
in one point, this would spread out, and the domino effect would propagate but not with a speed faster
than the speed of light. Thus, tachyons do not fly faster than the speed of light.

String theory has so far given just an instable vacuum. That is where superstring theory comes into
the game. The simple string has found a massless particle with two polarization states. String theory
has found a way to get rid of the tachyons, but no string theory has been able so far to get rid of these
photonlike objects. At the time when string theory started, it was not supposed to be a theory for
photons but for hadrons, and there are no massless mesons. Thus, these photonlike objects and these
tachyons were seen as unwanted. In all these years of string theory, it was easy to get rid of the tachyons,
but it was not possible to get rid of these photonlike objects.

2.8 Interactions Between Strings

So far, only free strings have been considered which wiggle and vibrate but did not interact
with other strings. The only process apart from wiggling and doing its own thing – and
everything is built out of it – is that two endpoints meet and join with a certain probabil-
ity. This joining interaction can only take place when two endpoints of strings moving in
spacetime touch as in the figure on the right side. This process corresponds to the Feynman
diagrams of quantum field theory. Because anything that can happen in quantum mechan-
ics can also unhappen through time reversal, there must be an amplitude for a string to
break into two strings. This probability is called the string coupling constant and corresponds to the
fine-structure constant which is the square of the electric charge and similar coupling constants. The
probability that two endpoints fuse is the same as the probability that a string breaks.

Because a string does not know its endpoints, it can happen that the two endpoints of a string touch
and fuse. This way a closed string can happen. Thus, it is inevitable for a theory with open strings that
interact to also have closed strings. There are theories with closed strings that interact and fuse, but
build again a closed string when fusing and never open strings. In other words, it is well possible to have
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theories with closed strings and no open strings, but it is not possible to have theories with open strings
but no closed strings. It turns out that the lowest excitation of an open string is a photon and the lowest
excitation of a closed string is a graviton. There are string theories without electromagnetism, but there
is no string theory without gravity. There are many string theories, but the one thing they have all in
common is the closed strings and the graviton.

Another interaction of two open strings is that they touch somewhere in the middle and rearrange in such
a way that one part of one string and one part of the other string fuse and the remaining two parts fuse
as well. Similarly an open and a closed string can fuse as well by touching somewhere. Therefore every
open and closed string can absorb a closed string. This is – according to string theory – the reason why
everything gravitates. Strings cannot only fuse and break but can also pass through each other. Because
the probability per unit time is the same for all strings, the probability is smaller to fuse if two strings
move faster than it is if they are moving slower.

3 The Mathematics of Closed Strings

3.1 Noether’s Theorem

For every symmetry there is a conserved quantity, and in quantum mechanics, the conserved quantity
becomes the generator of the symmetry. There is a Lagrangian L(q, q̇) which depends on some coordinates
q and their time derivatives q̇. The canonical momentum is Pi = ∂L/∂ṗi.

If there is a symmetry which involves a transformation on the qs, an infinitesimal symmetry which just
shifts a little bit, then the variation is written as δqi, and it might be something like δqi = fi(q)ε. If
one makes a little change on one qi, it may depend on all the other qs times a small ε. An example is
rotation is space where all coordinates may change, and the change is proportional to the little angle.
The preserved quantity – angular momentum in the example of the rotation – is

Q =
∑
i

Pifi(q) (3.1)

and is called the Noether charge or, in quantum mechanics, the generator of the transformation. This
theorem is useful because there are all sorts of symmetries in string theory.

3.2 Model of a Relativistic Closed String

Some point of the closed string is labeled σ = 0. Half-way around the string is σ = π,
and the length of the whole string is 2π. The point with σ = 0 and the direction in which
σ increases have to be chosen once for all. A wave moving on the string can move to the
left or to the right meaning in direction of decreasing or increasing σ. As a convention,
a wave moving to the right goes into the direction of increasing σ. The coordinates
X(σ, τ) and Y (σ, τ) describe the position of the point with σ at the proper time τ . For closed strings,
there are no real boundary conditions, but there is something one could call a boundary condition and
that is X(2π, τ) = X(0, τ) and Y (2π, τ) = Y (0, τ).

A wave moving on an open string gets reflected at the endpoints and changes therefore from left-moving
to right-moving and vice versa. On a closed string, left-moving and right-moving waves stay what they
are and continue to move into the same direction when they reached σ = 2π.

It is convenient to describe waves not by sines and cosines but by exponentials einσ = cos(nσ)+ i sin(nσ).
One can also decompose them into Fourier series not with Dirichlet or Neumann boundary conditions
but periodic

X(σ, τ) =
∑
n∈Z

Xn(τ)einσ =
∑
n>0

Xn(τ)einσ +
∑
n>0

X−n(τ)einσ +X0(τ)

Y (σ, τ) =
∑
n∈Z

Yn(τ)einσ =
∑
n>0

Yn(τ)einσ +
∑
n>0

Y−n(τ)einσ + Y0(τ)
(3.2)
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where n > 0 is a right-moving wave, n < 0 a left-moving wave. The coordinates for the motion of the
center of mass are (X0, Y0), and the boundary conditions X(2π, τ) = X(0, τ) and Y (2π, τ) = Y (0, τ) are
automatically fulfilled. Many calculations and equations for the closed strings are very similar to those
for the open strings. The integrals go from 0 to 2π and so on, and the Lagrangian, for example, becomes

L =

∫ 2π

0

dσ

((
∂X

∂τ

)2

+

(
∂Y

∂τ

)2
)
−

((
∂X

∂σ

)2

+

(
∂Y

∂σ

)2
)

such that it can be decomposed into a Fourier series similar to the open strings.

The energy is the same integral but with a plus sign, and the terms with X in the integral can alternatively
be written as (

∂X

∂τ

)2

+

(
∂X

∂σ

)2

=
1

2

(
∂X

∂τ
+
∂X

∂σ

)2

+
1

2

(
∂X

∂τ
− ∂X

∂σ

)2

which is useful because a wave moving in one direction is a function of σ + τ and a wave moving in
the other direction a function of σ − τ . Thus, the energy in this form is split up into the energy of the
left-moving and the right-moving waves. Left-moving and right-moving waves are transparent to each
other because they go right through each other.

Also here the Xn and Yn are harmonic oscillators, but for each n there are now four oscillators because
one going to the left and one going to the right for X and Y . They correspond to Xn, X−n, Yn, and Y−n,
and their creation operators are a+n , a+−n, b+n , and b+−n. As in the case of the open strings, the frequency
of these four harmonic oscillators is n.

3.3 The Spectrum of Closed Strings

The ground state |0〉 has some energy m2
0 as in the case of the open string. There are the four possibilities

a+1 |0〉, a
+
−1 |0〉, b

+
1 |0〉, and b+−1 |0〉 in order to act on the ground state to get the first excitation. This is

not yet the right picture as will be seen. There is no candidate for the angular momentum 0, and this
must therefore correspond to massless particles as shown for the open strings. The theory so far has
produced a doubling of the photon spectrum.

There are rules which forbid certain combinations, and the rule here is called level matching. It states
that the right-moving energy and the left-moving energy must be the same. Because a+1 |0〉 has one unit
of right-moving energy and a+−1 |0〉 has one unit of left-moving energy, both states do not satisfy the level

matching rule, but going to the next level, a+1 a
+
−1 |0〉 satisfies it. Obviously, also b+1 b

+
−1 |0〉 satisfies it, but

a+1 b
+
−1 |0〉 and a+−1b

+
1 |0〉 do as well. These four states are the only states with two units of energy that

fulfill the level matching rule.

The states (a+1 +ib+1 )(a+−1+ib+−1) |0〉 and (a+1 −ib
+
1 )(a+−1−ib

+
−1) |0〉 with angular momentum 2 and angular

momentum −2, respectively, plus the two states (a+1 + ib+1 )(a+−1− ib
+
−1) |0〉 and (a+1 − ib

+
1 )(a+−1 + ib+−1) |0〉

both with angular momentum 0 are linear combinations of the previous four states fulfilling the level
matching rule and build another basis. This cannot be a particle with mass and spin 2 because there are
no states with spin ±1, but must be massless. The interpretation is that the first two states with angular
momentum ±2 represent gravitons, and the other two states correspond to the two massless particles
dilaton and axion with spin 0 which have the common feature that they have never been discovered.
There are possibilities to get rid of the dilaton and the axion without getting rid of the graviton.

To understand the level matching rule, one question to answer is whether the point σ = 0 on the closed
string is really a physically special point. Another way of phrasing the question is whether the state a
closed string is invariant under changing the origin of the σ-coordinate. Assuming the string consists of
N point masses with coordinates Pi = (Xi, Yi), the wave function would be Ψ(P1, P2, P3..., PN ). If P1 is
not special, two wave functions Ψ(P1, P2, P3, ..., PN ) and Ψ(P2, P3, ..., PN , P1) with different start point
should be the same. In other words, the wave function should have a certain symmetry. This is certainly
a reasonable property to ask for. Going from the discrete to the continuous string, the condition for the
wave function becomes Ψ(X(σ)) = Ψ(X(σ + ε)) where all points on the string are relabeled by adding ε
or, in other words, shifted by the same amount. Rewriting this equation to 0 = Ψ(X(σ + ε))−Ψ(X(σ))
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leads to ∫
∂Ψ

∂X(σ)

∂X

∂σ
dσ = 0

because it is a change for all values of σ and the ε is just a constant not influencing the fact that the
integral is zero. Whenever a wave function in quantum mechanics is differentiated by a coordinate, this
can be rewritten as the action of the corresponding momentum. The first factor in the integral becomes
P (σ) which is the velocity of the corresponding point such that∫

P (σ)
∂X

∂σ
dσ =

∫
Ẋ(σ)

∂X

∂σ
dσ =

∫
∂X

∂τ

∂X

∂σ
dσ = 0

becomes the condition for the fact that there is not a preferred point on the σ-axis. Because the energy
has been found to be the sum of the left-moving and the right-moving energy∫

dσ

(
1

2

(
∂X

∂τ
+
∂X

∂σ

)2

+
1

2

(
∂X

∂τ
− ∂X

∂σ

)2
)

above, the difference of the two energies must therefore be zero.

Thus, the fact that there is no distinguished point on a closed string gets rid of many states and leaves the
photon as the lowest state above the ground state in the spectrum of the open strings and the dilaton, the
axion and the graviton as the lowest state above the ground state in the spectrum of the closed strings.

3.4 Strings as the Most Fundamental Objects

The question whether the strings are the most fundamental objects in physics is, as physicists have
learned, not a good question. As an example, one can look at the question whether the electron or the
monopole is the more fundamental object. Assuming there are monopoles in quantum electrodynamics, it
is easy to formulate quantum electrodynamics such that there are monopoles in it. The electric charge e
times the monopole charge q has to fulfill the equation eq = 2π in order for the Dirac string (the solenoid)
which is connected to the monopole to be invisible. This is the condition that if you have a monopole
connected to a long string – this is the only way to make a monopole mathematically – that charged
particles which go around that string do not detect phase shifts. That means if the electric charge is very
small one can do quantum electrodynamics with Feynman diagrams and so on. If the electric charge is
very large, Feynman diagrams are not very useful because each Feynman diagram contains some vertices
and each vertex has an e2 in the probability such that the Feynman diagrams get bigger and bigger and
do not converge. Thus, Feynman diagrams are a tool to study theories with small charges.

For eq = 2π, the magnetic charge q must be very big if e is very small. Thus, if there are magnetic
charges, and the Maxwell equations are rather symmetric with respect to the electric and the magnetic
field, the question is whether the electric or the magnetic charge is more fundamental. Because of the
divergence problems of the Feynman diagrams for large charges, it makes sense to take the electric charge
as more fundamental. The magnetic charge would emit photons with high probability and therefore be
surrounded by many photons which would interact very strongly with pairs of electric charges. This
would turn the magnetic charge into a very complex thing with all kinds of internal structure and would
make it useless as a starting point for Feynman diagrams.

One could gradually make e bigger and q smaller. Whether one is more fundamental than the other
depends on whether it is useful to think one way or the other. Whether one way or the other is more
useful may depend on the parameter of the theory. There is no ultimate answer to the question whether
the electric or the magnetic charge is more fundamental.

3.5 Discussion of Units

In a string theory there is only one parameter. A non-relativistic string stretched to length L behaves
pretty much like a spring. It has a potential energy E = kL2/2, which has been identified above with
m2. This means that the mass in the rest frame is proportional to the length L und the square root of
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the spring constant k. With the T =
√
k called the linear tension in the string, and with units such that

~ = 1 and c = 1, the unit of energy is one over the unit of length, and the unit of the tension is energy
squared or one over length squared. Each time one excites a state by one unit, this adds essentially that
tension to m2. The thing which determines the units of the theory is this tension T . The energy jump
between ground state and first excited state or first excited state and next excited state and so forth is
controlled by this tension T . The string tension is energy per unit length, and energy per unit length is
force because force times distance is work. Thus, tension is the force pulling back when one stretches the
string. In other words, if one attaches the string on one side somewhere at the surface of the Earth, the
tension is the weight that the string can support. Because energy E and force F satisfy the equations
E = T ·L and F = E/L, the force F = T that the string can support is independent of the length. That
is the character of these strings.

One can ask how much weight a meson, for example, could support, and the answer is in the order of
magnitude of a truck. Thus, they are pretty strong. Of course, nobody has ever tested whether a meson
can support a truck, but what one knows is how much energy it takes to excite a string, and from that
one can figure out what the tension is. The strings corresponding to photons and gravitons could support
the weight of a whole galaxy because their tensions are very large and the springs are extremely stiff such
that it is very difficult to excite them. The energy to excite a string is somewhere near the Planck energy
which is around 10−5 g times the speed of light squared.

In physics the three units mass, length and time are needed. The units kilogram, meter and second have
more to do with the biology of the humans than with physics. Using units optimal for physics would make
many formulas much simpler, but to make all of physics simpler and not just one field, the units must
correspond to universal quantities. Three fundamental quantities that can be set to one are the speed of
light c which is the same in every reference frame, the Planck constant ~ which appears in the uncertainty
principle, and the gravitational constant G which makes the gravitational attraction independent of the
kind of matter. They are all universal in the sense that they apply to everything. They can be set to one
to make physics simpler.

The three values can be combined to get the units of mass, length and time. As an example, there are
integers p, q, r such that Gp~qcr gives units of length squared. The unit of c is length over time, the
unit of ~ is length squard times mass over time, and the unit of G is length cubed over mass times time
squared. Solving the equations gives q = p, r = −3p and p = 1 such that length squared has the same
units as G times ~ over c3. The value 1 lP =

√
~G/c3 ≈ 1.6 · 10−35 m is called the Planck length. The

Planck time is the time for a light ray to move a Planck length and is 1 tP =
√
~G/c5 ≈ 5.4 · 10−44 s.

The Planck mass finally is 1 mP =
√
~c/G ≈ 2.2 · 10−8 kg. The observable universe has a radius of about

1060 lP, and the age of the universe is also about 1060 tP. The energy content of a tank of gasoline is
about 1 mP.

String theory is in Planck units. The size of a vibrating string and the fluctuations due to the uncertainty
are in the order of the Planck length, the period of the oscillations are in the order of the Planck time,
and the mass needed to excite a gravition are expected to be in the range of the Planck mass. A Planck
mass is in the order of 1019 proton masses, and that is a huge amount of energy. The difficulty is not to
get a Planck mass of energy but to pump it into such a small volume needed to excite a graviton. Nobody
believes that the length of a string is smaller than an Planck length, but it could be larger. Strings smaller
than the Planck length would mean a mass larger than the Planck mass, and small things with a big mass
are black holes. Predictions in this scale, however, are beyond direct verification. Experiments indicate
that the ordinary quantum field theory probably holds to something like a distance scale of roughly a
thousand times larger than the Planck scale.

3.6 Some Difficulties in String Theory

In order for the photons to come out right as massless when discussing open strings, the mass squared of
the ground state had oddly to be minus one unit. The problem is the zero point energy of the harmonic
oscillator which is 1

2~ω. With ~ = 1 and the frequency of the nth harmonic oscillator with frequency
ω = n, the ground state energy is n

2 in some units. Because there are oscillators for every integer n and
one has to add up all this energy, it is not easy to imagine how this addition (the sum over all integers
times some factor) can result in −1 with a mathematically convincing argument.
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Going back to a system moving very fast down the z-axis with the overall momentum P which is a
conserved quantity shows that the energy is E = P + m2/2P . The momentum P is to be taken as the
infinite limit, and E−P in 2P (E−P ) = m2 is a perfectly conserved quantity which never changes. It is not
necessarily true that all this energy has to add up to minus one, because one can write 2PE = m2 + 2P 2,
and the sum gets −1 plus the infinite term 2P 2 which can be absorbed into something else. This is a
trick of physics which takes place all the time. One gets some infinite answer and does not know what to
do with it, but one realizes that the quantity that becomes infinite has already a constant piece in it such
that one can add the extra infinity to the constant piece. In this case, the term 2P 2 is already there, and
the infinity of 1

2

∑
n can just be added to it such that one gets −1 plus an infinity which partially was

already there. As long as the infinite term is constant, it never effects anything.

The mathematics of the trick here is to add 1e−1ε + 2e−2ε + 3e−3ε + ... instead of 1 + 2 + 3 + ... which is
the same for ε = 0. If ε is a small number, the factor e−nε overpowers the growing factor n in each term
of the infinite sum such that the series converges. The goal is to find the infinite sum and let ε got to 0.
To do so, the sum is turned into a converging geometric series

∞∑
n=1

ne−nε = − ∂

∂ε

∞∑
n=1

e−nε = − ∂

∂ε

∞∑
n=0

e−εe−nε = − ∂

∂ε

e−ε

1− e−ε
= − ∂

∂ε

1− ε+ ε2

2 + ...

ε− ε2

2 −
ε3

6 + ...

≈ − ∂

∂ε

1

ε

1− ε+ ε2

2

1− ε
2 + ε2

6

≈ − ∂

∂ε

1

ε

(
1− ε+

ε2

2

)(
1 +

ε

2
− ε2

6
+
ε

4

)
≈ − ∂

∂ε

1

ε

(
1 +

ε

2
+
ε2

12
− ε− ε2

2
+
ε2

2

)
= − ∂

∂ε

1

ε

(
1− ε

2
+
ε2

12

)
=

1

ε2
− 1

12

using the Taylor expansion of the exponential function and 1
1−ε = 1 + ε+ ε2 + ε3 + ... up to ε2. Here, the

term 1
ε2 gets absorbed into the infinite P 2 term which is an additive constant in the energy and can be

ignored. The real answer is that in properly designed string theories the term 1
ε2 is not there. Thus, the

answer is − 1
12 – or actually − 1

24 because of the factor 1
2 in front of

∑
n –, but it is not −1. Because of

the oscillators in X and Y , there is twice as much energy in the ground state. Thus, this quantity − 1
12 is

the energy of the ground state including the zero-point oscillations but throwing away a certain infinite
term which has to be explained away later.

It is still not −1, and the solution is to say that there are not two dimensions but there are twenty-four
dimensions plus the axis on which the system is boosted plus time. In total, there are therefore twenty-six
dimensions. At the time around 1969, physicists were just exploring string theory, and this was certainly
not a convincing argument at that time. For the closed strings, the ground state must have the energy
−2. If the same theory has to have closed and open strings, the number of dimensions cannot be changed
again and this is also not needed because closed strings have left-moving and right-moving oscillations
doubling the energy.

4 Scattering of Strings

4.1 Scattering Experiments

Particle physics always is about scattering because it is basically all one can
do experimentally. Particles come in, something happens inside the box, and
particles go out – not necessarily the same number of particles. The particles
coming in carry momentum, spin and so on. Everything except momentum
(E,Px, Py, Pz) = kµ for the relativistic particles is ignored here, and the relation
between energy, momentum and mass is E2 = P 2+m2 or P 2−E2 = −m2 with c set to one. This can also
be written as ~k2− k20 = kµk

µ = k2 = −m2 in terms of the components of k. To distinguish incoming and
outgoing four-vectors, the incoming are called k and the outgoing q. Energy and momentum conservation
is k1 + k2 = q3 + q4 in the case of the figure on the right side.

To simplify the picture, physicists prefer to write q3 = −k3 and similarly for the other outgoing particles.
Energy and momentum conservation becomes now k1+k2+k3+k4 = 0 and takes a completely symmetric
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form where the constraint k2 = −m2 is still satisfied. The probabilities and therefore the amplitude A in
the scattering experiment is a function of the ks. There is some redundant information in A(k1, k2, k3, k4)
because of the k2 = −m2 and the k1 + k2 + k3 + k4 = 0. The sixteen variables represented by the four ks
of the example in the figure can be reduced to two by going to a frame of reference where the center of
mass is at rest, by rotating the frame such that the incoming particles move on the x-axis, by using the
conservation laws for energy and momenta and by using the other constraints above. Only the energy
Ecm of the center of mass and the angle θ of the outgoing particles relative to the x-axis remain as
independent variables.

To create invariants from four-vectors, one can square them, but one can also add two and square the
result to get (k1 + k2)2 = (~k1 + ~k2)2 − (k01 + k02)2. In the center of mass frame, ~k1 = −~k2 with equal

magnitude and opposite directions such that (~k1+~k2)2 = 0, and k01 = k02 such that (k1+k2)2 = −(2k0)2

which is the square of the total center of mass energy and is called −s. Thus, s = Ecm, and this is the
same as (k3 + k4)2. All the particles have the same energy. They come in and go out with the same
energy get scattered by an angle, and that is all that happens. For (k1 + k3)2 which is the same as

(k1 − q3)2, k01 + k03 = 0 because k01 = q03, and the incoming momentum ~k1 gets transferred to the

outgoing momentum ~q3. The quantity (~k1−~q3)2 is called the momentum transfer which can be expressed
in terms of the scattering angle as (k1 + k2)2 = 2(E2 −m2)(1− cos θ). This angle is what is measured in
an experiment. Thus, s = Ecm and t = (E2 −m2)(1 − cos θ) are the two important quantities. A third
quantity is −u = (k1 + k4)2 = (E2 −m2)(1 + cos θ). The three quantities −s = (k1 + k2)2 = (k3 + k4)2,
−t = (k1 + k3)2 and −u = (k1 + k4)2 are called Mandelstam variables, but are not independent, because
there are only the two independent variables Ecm and θ. The interesting quantities are s and t.

4.2 The Veneziano Amplitude

If two particles collide, create a third particle with a different mass M , and then
this particles decays again as in the figure on the right side, this is a Feynman
diagram which has a value. This value is the product of two coupling constants g
and is the propagator 1/(s−M2) in between giving together g2/(s−M2). That
is the characteristic structure of a scattering amplitude, and it only depends on s, but not on t and u.

If, however, the two particles exchange the third particle as in the figure on the right side,
where time also runs from left to right, the value of this Feynman diagram is g2/(t −M2).
There is also a Feynman diagram with leads to an equation with u, but it is not shown here.
The equation with t contains the angle of scattering θ, but the one with s does not. In the
process with the propagator 1/(s−M2) every angle is equally probable. That seems odd on the
first view, but the reason is very simple. The particles come in and form this compound state
(the third particle), and when this compound state decays, they have forgotten from which
direction they have come in. The Feynman diagram with t, however, depends on the angle θ
and favors small angles.

This does not describe the scattering of mesons very well because there are many particles that can be
produced when two mesons collide. The result of a collision of two mesons can have different mass and
different angular momentum. The angular momentum changes the dependence of the angle θ. Thus, the
formulas shown here are too simple to describe the scattering of mesons.

A more sophisticated formula than the simple addition of the s- and t-channel g2/(s−M2)+g2/(t−M2)
has been found by the young physicist Veneziano. It is

g2
Γ(−s)Γ(−t)
Γ(−s− t)

and uses the gamma function Γ(x) which is defined for integers as the factorial Γ(n) = (n − 1)! but
is generalized to real numbers. The formula is also symmetric with respect to s and t. It has all
the important features for a scattering amplitude to have, it could be analyzed as if a whole bunch of
particles were produced and then decayed, but it could also be analyzed for a whole bunch of particles
being exchanged. This was new because before everybody would have added the contributions of the
s-channel and the t-channel.
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The question was what kind of physics gives rise to this formula. The answer turned out to be string
theory. One starts with two open strings in spacetime which may with some probability coalesce into one
string when the two ends touch. This string stays for a while together and may with some probability
split into two strings again. If the first string has momentum k1 and the second k2, and if Ψ0 is the wave
function of the ground state, the wave functions to be multiplied

Ψ(X1, ..., XN ) = ek1
X1+...+XN

N Ψ0(X1, ..., XN ) Ψ(XN+1, ..., X2N ) = ek2
XN+1+...+X2N

N Ψ0(XN+1, ..., X2N )

describe the two strings without going to the continuous limit. With some probability the two endpoints
merge when XN = XN+1. If they did, a new wave function describes the newly formed string. One
uses the Hamiltonian to let it propagate in time by multiplying the initial state with eiHτ . One lets it
evolve and break up again to finally form two strings. To summarize, one starts with the two particles,
constrains them to be on the same place, lets things evolve and projects them on the final state. This
gives the amplitude for the two strings to coalesce for a time τ . This calculation is doable, and even not
hard. The result is an integral summing according to Feynman over all possible paths. The integral is∫ ∞

0

e−τ(−s−1)(1− e−τ )−t−1e−τ dτ

using the Mandelstam variables. Defining z = e−τ changes the integral to∫ 1

0

z−(s+1)(1− z)−(t+1) dz = β(−s,−t)

which is completely symmetric with respect to s and t. This function is called the Euler beta-function,
and it is equal to the Veneziano amplitude. The mathematics for closed strings is very similar.

This symmetry between the s- and the t-channel has the property that not only processes where particles
coalesce are described but also somewhere buried in it also processes where particles exchange other
particles. That was a surprise.

4.3 Spacetime View of String Theory

The trajectory of a particle can be written as x(t) in classical mechanics, and as Xµ(τ) in relativistic
physics. In both cases, the motion of a particle is defined by an action – a principle of least action –

and the action for a free particle is S =
∫
dt 1

2mẋ in classical physics or S =
∫
dτ
(
∂Xµ

∂τ
∂Xµ
∂τ

)
in the

relativistic case. In quantum mechanics, one does something completely different with the action. One
does not ask what the trajectory is given to the endpoints, but asks what the amplitude is to find the
particle at a given point x(t2) if it has been at the beginning of the time interval at a given point x(t1).
The amplitude is

A =

∫
ei

1
2

∫ t2
t1
dt ( dxdt )

2

where the outer integral goes over all paths and is therefore a monstrous object. For relativistic quantum
mechanics, the inner integral is replaced by the corresponding action for relativistic motion. In relativistic
physics, the amplitude is called the propagator for the particle to go from the startpoint to the endpoint.
One integrates or sums over all Feynman diagrams.

There is a cheating trick of physicists which is actually justified. The term ei... in the amplitude has
magnitude 1 for all paths, and they cancel each other in many cases. In the relativistic case, the variable
τ is replaced by τ = αs where α is a number chosen later. The integral becomes∫ s2

s1

α

α2
ds

(
∂X

∂s

)2

where one of the factors α cancel. With α = −i the amplitude magically looses the i, and the integral
becomes

e−
1
2

∫
( ∂X∂s )

2
ds
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and can be treated as a real number although the endpoints of the integral are not real numbers. Later,
one can remember that the endpoints are imaginary numbers. Integrating this expression over all possible
paths is now much easier. For paths wiggling strongly or going far off and come back, the term (∂X/∂s)2

gets big and therefore the action gets big. Any trajectory far from the simplest trajectory has a huge
action with a negative sign. Because e to the minus a large number is a small number, these far off
trajectories do not contribute much. Only the trajectories near the simplest one are important. This
form of the integral over the paths is called Wiener integral and has been invented in a mathematically
rigorous way before the Feynman path integration. In the end, the integral gives a function F (s1, s2),
where s1 and s2 are the imaginary startpoint and the endpoint. After evaluating this function, the value
has to be analytically continued (or extrapolated) to imaginary values of s. This is known how it has to
be done, and this is the only real way physicists do path integrals.

In string theory, the procedure is similar, but the particles are no longer points but
strings such that world lines become world sheets for open strings and world tubes for
closed strings. The position Xµ(τ, σ) on the world tube as in the figure on the right side
is given by the two parameters τ and σ where τ is a kind of time variable and could
be proper time, but is here just a parameter similar to σ. Also in this calculation one
creates an action with an integral over all possible tube surfaces

S =

∫
dτ dσ

(
∂Xµ

∂τ

)2

−
(
∂Xµ

∂σ

)2 ∫
ei

∫
dτ dσ ( ∂X

µ

∂τ )
2−( ∂X

µ

∂σ )
2

which is the amplitude for the given startpoint and endpoint.

One can generalize the idea to two strings going to two strings or two strings going
to three strings as an example in the figure on the right side shows. The amplitude
is similarly the integral over all possible surfaces connecting the initial states with the
final states. These surfaces can have holes in it. Because of the ei... again each path
contributes something with magnitude one, and the solution is again to analytically
continue. The problem is not σ but τ . With replacing τ by ±iτ whatever fits better,
the amplitude becomes ∫

e−
∫
( ∂X

µ

∂τ )
2
+( ∂X

µ

∂σ )
2
dτ dσ (4.1)

where the term inside the inner integral in the exponent is always positive. The wilder the surface is, the
bigger is (∂X/∂τ)2 + (∂X/∂σ)2. If it wiggles a lot, the term (∂X/∂σ)2 is large, and if it vibrates very
much, the term (∂X/∂τ)2 is large. If it stretches out far away, both will be large. (This action is called
Polyakov action although Professor Susskind has invented it. There is also a second, more complicated
action called Nambu–Goto action.)

Because the parameters σ and τ can be chosen in various ways, the transformation properties of the sum
(∂X/∂τ)2 + (∂X/∂σ)2 with its invariants are of interest here. Instead of looking at the action S on the
left side, the equation of motion on the right side is used

S =

∫
dτ dσ

(
∂Xµ

∂τ

)2

−
(
∂Xµ

∂σ

)2
∂2X

∂τ2
+
∂2X

∂σ2
= 0

which is called the Laplace equation. Whether one works with the action S or the equation of motion
does not matter, because both give the same result. If X(τ1), X(τ2), X(τ3) are neighboring points with
distance ε, then the first derivative is approximately X(τ3)−X(τ2) divided by ε and the second derivative
[X(τ3)−X(τ2)]− [X(τ2)−X(τ1)] = X(τ3) +X(τ1)− 2X(τ2) divided by ε2. Similarly in two dimensions,
the Laplace equation states that X(P1) + X(P2) + X(P3) + X(P3) − 4X(P0) = 0 for the values at the
four neighbor points P1, P2, P3, P4 around P0. In other words, the value at a point is the average of its
neighbors around it. (The same is true in higher dimensions.) Because the Laplace equation is invariant
under rotation, one can take any infinitesimal square, and the value at the center is the average of the
values of the four corners.

4.4 The Laplace Equation

The Laplace equation – and therefore the above action – is invariant under any transformation σ′(σ, τ),
τ ′(σ, τ) that transforms every infinitesimal square into an infinitesimal square, and these transformations
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are called conformal mappings. Mappings which preserve angles between curves transform sufficiently
small squares into squares. However, any shape with a closed boundary can be mapped by some conformal
mapping to any other shape also with a closed boundary, and a large square can turn into anything else,
because only infinitesimal squares are mapped to infinitesimal squares.

Going back to the two strings that join for some time and split again, this doubly-slit strip is topologically
equivalent to a filled circle or disk as shown in the figure below with the four special points representing
the endpoints of the strip at infinity, and this double-slit strip can be conformally mapped to a disk. It
is still a Laplace equation. Thus, one can select parameters σ and τ in such a way that all values of X
are on a unit disk, and the integration over all paths can be done on the unit disk with the four special
points treated consistently.

In order to calculate the scattering amplitude, one has to do something with these four infinite points
of the original doubly-slit strip. To set up and specify the initial and final states of the particles, their
momenta, the particle types and so on, these information has to go somewhere, because there is more
than the fact that there is a Laplace equation here. The points on the circle are a one-parameter family,
and the time where the two strings are joined is also a one-parameter family. This time governs the place
for the four points. The beta-functions comes from the four points which are called injection points. The
limit where the two points left and the two points right are close together corresponds to the situation
where the two strings are joined for a long time interval. The limit where the two upper points and the
two lower points are close together corresponds to the situation where the two strings are joined only for
a short period of time.

The two momenta k1 and k2 of the two strings on the left side give s = (k1 +k2)2 = E2
cm and corresponds

to one of the Mandelstam variables as well as to the square of the center of mass energy. This is the limit
where the two points on the left side and the two points on the right side are close together. The one
momentum k1 on the left side and the one momentum k3 on the right side of the doubly-slit strip give
t = (k1 + k3)2 and correspond to another Mandelstam variable. Thus, in this form it is clear that there
is a symmetry between the s-channel and the t-channel.

As discussed above, this shows again that this process describes the situation where two particles collide
and form another particle which later decays into the initial particles, but also describes the situation
where two particles exchange a third particle. This is the duality of the s-channel and the t-channel.

4.5 Conformal Mappings and Analytic Functions

The Coulomb force in two dimensions is one over r and not one over r2 as in three dimensions, and the
potential energy between a pair of charged particles is logarithm, because the derivative of logarithm is
one over r. In a world, where the lines of flux cannot escape into a third dimension, electrostatic problems
would have two-dimensional versions of the electric field ∇Φ = E and the charge density ρ = ∇E = ∇2Φ.
This means that

∂2Φ

∂x2
+
∂2Φ

∂y2
= 0

if there is no charge density. This equation is invariant under any change of coordinates which are
angle-preserving or, in mathematical terminology, are conformal mappings. There is also a curl in two
dimensions, but it has only one component which is

∂Ex
∂y
− ∂Ey

∂x

for E = (Ex, Ey). The Laplace equation does not only appear in two-dimensional electrostatics, but also
in fluids and other two-dimensional problems in physics.
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Conformal mappings are mappings from the two-dimensional plane to the two-dimensional plane and can
be written as mappings Z→ Z with z = x+ iy. They allows to derive from solutions of, for example, an
electrostatic problem in a space with some boundary conditions an infinitesimal number of other solutions
in other spaces with other boundary conditions by mapping the solution to the other space.

A conformal mapping can be seen as a coordinate transformation from z = x + iy to w = u + iv in the
complex plane, and it is assumed to be a one-to-one mapping. Thus, any point in the plane can either
be described by coordinates (x, y) or by coordinates (u, v), and w(z) is a complex function. If one moves
the point z to z+ ∆z, the point w moves to w+ ∆w. The derivative is the limit of ∆w/∆z for ∆z going
to zero. There is only one problem because one can approach the point z from any direction. It is not
clear whether the result of this limit is not dependent on the direction from which one is coming even if
the function is nice, continuous and with all kinds of good continuity properties. Thus, the question is
what the conditions are that the derivative is well defined and independent of the direction.

The necessary condition for a well-defined derivative is that coming in from the x-axis or coming in from
the y-axis gives the same result. Thus, the derivative must fulfill

dw

dz
=
du+ idv

dx+ idy
=
∂u

∂x
+ i

∂v

∂x
=

1

i

∂u

∂y
+
∂v

∂y

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
(4.2)

and functions with this property are called analytic functions. Without proof, this is not only a necessary
condition but also a sufficient condition. Because

∂2u

∂x2
=

∂2v

∂y∂x

∂2u

∂y2
= − ∂2v

∂x∂y

∂2v

∂y2
=

∂2u

∂x∂y
−∂

2v

∂x2
=

∂2u

∂y∂x

the conditions for an analytic function can be written as

∂2u

∂x2
+
∂2u

∂y2
= 0

∂2v

∂x2
+
∂2v

∂y2
= 0

in the form of the two-dimensional Laplace equations, but these conditions are not sufficient. Only if the
two real functions u and v are linked together by the equations (4.2), called Cauchy-Riemann equations,
the complex function w(z) is analytic. Therefore, two real functions fulfilling the Laplace equations do
not always give an analytic function.

A complex number can be represented by the real and the imaginary part but also in polar coordinates
as z = reiϑ. The ratio of two complex numbers z1 and z2 is z1/z2 = (r1/r2) ei(ϑ1−ϑ2). Thus, the angles in
a ratio get subtracted. Assuming that δz1 and δz2 are two small displacements of z in different directions
with the corresponding displacements δw1 and δw2 of w = w(z), and assuming that w(z) is an analytic
function, the derivatives δw1/δz1 and δw2/δz2 must be equal. This equation can be written as

δz2
δz1

=
δw2

δw1

with the consequence that the angles between δz1 and δz2 on one side and between δw1 and δw2 on the
other side are equal. In other words, the mapping is a conformal mapping. Because the Laplace equations
do not change under conformal mappings, the analytic functions are very important in string theory.

Taking w = z2 as an example, the equation x2−y2 +2ixy = u+ iv must hold. Thus, one gets u = x2−y2
and v = 2xy. The Laplace equations are satisfied. Taking w = z∗ as another example, the equations u = x
and v = −y cannot fulfill both Cauchy-Riemann equations, and the complex conjugate is not an analytic
function. The third example w = ez gives u = ex · cos y and v = ex · sin y. The two Cauchy-Riemann
equations are satisfied. Because w = log(z) is the inverse function of w = ez, and if a function preserves
angles also the inverse function preserves angles, also the logarithm must be an analytic function.

4.6 Analytic Functions Mapping to Strings

The function w = log(z) is an important mapping in string theory. It is defined on the right half of the
complex plane, and w = log(z) = log(r) + iϑ with z = reiϑ. In this form, ϑ goes from −π2 to +π

2 , and
the lines with ϑ = ±π2 in the z-plane are mapped to two horizontal lines.
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Straight lines leaving the origin in the z-plane become horizontal
lines in the w-plane, and half-circles with the center in the origin
of the z-plane become vertical lines in the w-plane as shown in
the figure on the right side. In other words, the upper half of the
y-axis in the z-plane corresponding to +π

2 marks the maximal v-
value in the w-plane and similar for the lower half of the y-axis in
the z-plane.

The w-plane has been used to model a string where σ goes vertically from −π2 to +π
2 and τ goes

horizontally from −∞ to +∞. If one shifts everything in the w-plane to the left, everything in the
z-plane shrinks by a uniform factor, and if on shifts everything in the w-plane to the right, everything
in the z-plane grows by a uniform factor. Thus, these so-called dilations which expand and contract in
the z-plane transform into time-translations in the w-plane. The string world-sheet could be described
as living on the half-plane with the string coming in at the origin.

If one maps not only the half-plane z but the whole plane, then this adds 2π horizontally to the w-plane,
but the result is a cylinder because the horizontal line v = 3π

2 is the same line as the horizontal line
v = −π2 . Open strings can therefore be represented by a half-plane and closed strings as the whole plane.

Another analytic function is w = (z + 1)/(z − 1) where w(0) = −1,
w(∞) = +1, and w(iy) = −(1 + iy)/(1 − iy) with |w(iy)| = 1 such
that the right half-plane in the z-plane is mapped to the unit disk
in the w-plane as shown in the figure on the right side. One can see
that straight lines through the origin in the z-plane get mapped to
parts of circles going through the points ±1 in the w-plane, and the
half-circles in the z-plane go to parts of circles as well but starting
and ending on the unit circle in the w-plane. If not only the right half-plane of the z-plane is mapped
but also the left half-plane, then the right half-plane goes to the inside of the disk, and the left half-plane
goes to the outside of the disk. In general, straight lines and circles get transformed into straight lines
and circles under linear fractional mappings such as w = (z + 1)/(z − 1).

These mappings are useful when dealing with Laplace equations. Solving two-dimensional electrostatic
problems, for example, can be done in the mapped geometry instead of the original geometry, and one
can go back and forth between geometries.

4.7 String Scattering Concepts

The two strings joining for some time and the splitting again as in the
figure on the right side consists of points where Xµ are their real location
in spacetime, and σ and τ are their coordinates on the world-sheet. To get
the scattering amplitude, one calculates (4.1). One question is how this
integral over all possible path knows about the momenta k1 and k2. The answer is shown later. Another
question is what the time interval is where the two strings are joined. The answer is that one integrates
over all possible histories.

Here one can make use of analytic functions to find a more convenient conformal map-
ping. The two-slit string can be seen as having one single boundary with some infinite
points on it. It can therefore be mapped to many other things with one boundary by
a conformal mapping. It can especially be mapped to a disk as shown above using
the combination of the logarithm and the linear fractional function. It is a bit more
complicated because of the two slits, but can be done and looks like the figure on the
right side. The lines in the figure correspond to vertical lines in the two-slit string with
the four infinite points marked. The curves close to the four points correspond to vertical lines in the
areas where the two strings have not yet joined or have already split. Where two of these curves touch
corresponds to the point where the two string either join or split. The location of the four points on the
boundary of the disk determine where the two strings join and split.

On this disk, it is much easier to calculate the integral (4.1) for the scattering amplitude. For each of the
four points which represents an external particle, a factor is added which injects the momentum. This
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gives a product
∏
eikX(z) with a factor for each external particle where k is the momentum and z is the

position of the corresponding point on the boundary of the disk. The path integral is∫
dz

∫
e−Actioneik1X(z1)eik2X(z2)eik3X(z3)eik4X(z4)

on the disk. To be precise, one should write kµX
µ(z) instead of simply kX(z). This is the whole set of

rules for the theory of open strings. The amazing thing is that these integrals can be calculated. That is
the good news. The bad news is that one almost always gets infinity, but only when one is in the wrong
number of dimensions.

The answer in the right number of dimensions is quite simple. It is the solution of an electrostatics
problem. One takes all the Xµ for every µ and thinks of each of them as an electrostatic potential. Each
one is a separate electrostatics problem. There is a world of twenty-six different kinds of electric charge,
twenty-six kinds of electric fields, and twenty-six kinds of electrostatic potentials if there are twenty-six
dimensions. The electric charges are the components of the momenta, and each one is the source of its
own electric field called X. There are not simply twenty-six charges of one kind but twenty-six different
independent kinds of charges, each creating its own electrostatic field.

One takes a two-dimensional disk, puts the charges on the boundary and on each of these points on the
boundary (corresponding to an external particle) one puts twenty-six different charges. The twenty-six
components of k become the twenty-six charges. One can now calculate the electrostatic potential inside
the disk, and from that one can calculate the field and therefore the energy. Calculating the electrostatic
energy of such a configuration and integrating over the points corresponding to external particles which
are moved around gives the scattering amplitude. There are twenty-six electrostatic energies which are
added up. The coordinates satisfy the Laplace equation, and the Laplace equation is the basic equation
for electrostatics. One does not have to call it electrostatics, but the mathematics is the same.

The same way one can calculate the scattering amplitude for more than just two incoming and two
outgoing particles. Because conformal mappings allow to chose the position of three external particles
on the boundary of the disk, there are only n− 3 integrations needed over the position of the remaining
external particles if there are n external particles. This is open string theory where the external particles
are injected at the boundary of the disk.

5 Strings in Compact Dimensions

5.1 Strings and the Curvature of Space

Point particles can move in curved spaces, they move on a trajectory, and they satisfy an equation of
motion which is a kind of Newton’s equation for curved spaces. If there are no forces, the particle moves
on a geodesic. With or without forces, finding the trajectory means solving a differential equation, and
solving differential equations means breaking the trajectory in little pieces and go to the limit where these
pieces get zero length. The question is how one knows whether the limit exists. Differential equations
have been studied for a long time, and there is a lot of experience on how to solve them.

In quantum mechanics the question is a bit different. Given a starting point and an endpoint, one would
like to know the probability to find the particle at the endpoint. There is also an action, but one calculates
now the path integral. This creates also partial differential equations to be solved, and they are much
harder, but there is also a lot of experience on how to solve them.

A point particle moving on a sphere with radius R has the kinetic energy 1
2mv

2 = P 2/2m, but there is
now a constraint that the particle has to stay on the sphere. The velocity vector and the momentum
vector are now in the surface of the sphere, but otherwise it is just classical mechanics. Going to quantum
mechanics, the momentum is quantized, because the angular momentum L = PR is quantized. Sticking
P = L/R into P 2/2m gives L2/2mR2 for the kinetic energy. With the moment of inertia I = mR2, the
kinetic energy becomes L2/2I.

A string moving in a curved space, for example on a sphere with radius R, is also approximated by a finite
number of point particles and going to the limit of infinitely many particles. The problem is that this
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limit does not exist in curved space. Because the string vibrates also in the ground state, it has a certain
size. With equations (2.8), the average square size of an open string in the ground state at any point
σ is 〈0|X2|0〉 = 〈0|

∑
nm(a+n + a−n )(a+m + a−m)/

√
nm cos(nσ) cos(mσ)|0〉. The term a+n a

+
m when acting to

the right has two extra units of energy and that has no overlap with the ground state on the left at all.
Also the terms a−n a

−
m and a+n a

−
m gives nothing. The only term contributing is a−n a

+
m if n = m. Thus, the

average square size is 〈0|X2|0〉 = 〈0|
∑
n(a+n a

−
n )/n cos2(nσ)|0〉. The cos2 term is always positive and its

average is about 0.5, the average of a+n a
−
n is just one, and therefore 〈X2〉 = 1

2

∑
n

1
n . The X(σ) in (2.8)

is not completely correct, because the center of mass motion has been left out. If the points of the string
are not at the center of mass, it means that the string is spread out. What has been calculated here is
how much it is spread out. This is a problem, because this sum is infinite.

Interestingly this gives no trouble in flat space. One can terminate the infinite sum at nmax and later
let the value of nmax go to infinity. As a function of nmax, the string occupies an area with radius r
where r2 ∼ log(nmax). In flat space this has an energy of 1

2mP
2, and it does not matter that it is

spread out. One does not have to remember that it is an extended object. This is not true in curved
space. If the string is at the north pole, for example, and one starts with the state where there are no
oscillating modes, the string would be a point and would move as an ordinary point particle with L2/2I.
It would move on great circles of the sphere and the motion would be controlled by the radius of the
sphere because I = mR2. When adding more modes of oscillation, the string starts to spread out, gets
a size and grows. It fills up some region, and the center of mass moves on the same great circle. The
moment of inertia about an axis is proportional to a sum or integral over the mass distribution and it is
governed by the square of the distance to the axis. On the sphere, not all points have the same distance
to the axis, and the moment of inertia gets smaller for points closer to the axis. In total, one can say
that the string behaves as if it is a point mass that moves on a smaller sphere. If one adds even more
modes of oscillation, the area covered by the string gets larger and larger, and the moment of inertia gets
smaller and smaller. As n gets larger and larger, the string covers larger and larger parts of the sphere
and the average moment of inertia gets closer and closer to zero. This is an effect of the curvatures. As
one adds more and more modes of oscillation, the moment of inertia gets smaller and smaller, and this is
unavoidable in all dimensions, and that is not a good theory.

The geometry with a metric tensor gµν(X) used for physics of strings should not change when increasing
nmax. One can do the above calculation for an arbitrary geometry, and the change δgµν(X) in the
geometry must depend on the curvature tensor Rδαβγ in the form of the Ricci tensor Rµν = Rαµνα,
because in a flat space there is no change. Thus,

δgµν(X) = −Rµν (5.1)

where the minus sign comes from the fact that the sphere gets smaller when one adds more structure.
This is the equation which shows how the geometry changes as one adds more and more fluctuations
to the string. Mathematicians call this equation Ricci flow. It is a fuzzing out of the geometry because
points have gotten fuzzed out by the fluctuations of the strings.

As one is interested in geometries which are stable and do not change when adding structure, and that
means geometries with Rµν = 0. This condition – called Ricci flat – is obviously true for flat spaces, but
there are other geometries which fulfill this condition. Ricci flat spaces allow strings to propagate sensibly
on that geometry. In spacetime, this equation is the Einstein vacuum field equation. The Einstein field
equation contains the Einstein tensor Gµν for the gravity and is

Gµν = Rµν −
1

2
gµνR = Tµν (5.2)

where R = Rαα. The tensor Tµν is the energy-momentum tensor containing everything except gravity.
The Einstein field equation for Tµν = 0 is called the Einstein vacuum field equation which is similar to
the Maxwell equations without charges and has gravitational waves as its solutions. There are simple
gravitational waves and interacting gravitational waves which can do all kinds of complicated things. It
is a whole infinite-parameter family of complicated solutions of these equations.

Setting Tµν = 0 is not yet the condition (5.1) for a Ricci flat space. The quantity Rαα is the trace of
the Ricci tensor. Writing the Einstein vacuum field equation in the form Rνµ − 1

2g
ν
µR

α
α = 0 where gνµ is

the Kronecker delta δνµ, the sum Rαα − 1
2δ
α
αR

α
α = 0 becomes Rαα = 2Rαα because δαα = 4. This means
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that Rαα = 0, and the Einstein vacuum field equation is Rµν = 0. Thus, the conclusion is that the only
geometries in which strings make sense are the solutions of Einsteins vacuum field equations. This is
quite impressive. Out of the consistency condition for strings to have a well-defined geometry in the limit
when the number of degrees of freedom becomes infinite, one finds Einsteins field equations.

This is not the whole answer to the question of the consistency of string theory. The real answer is that
the space must be Ricci flat and must have the right number of dimensions. The number of dimensions
is ten for the superstring theory and twenty-six for ordinary string theory.

5.2 Compactification

Compactification is the process of getting rid of dimensions. One does not really get rid of them but one
makes them small enough such that they become invisible except for very small things. These dimensions
are rolled up into little manifolds. They have an effect on particles but cannot be detected with a coarse
apparatus. In superstring theory there are ten dimensions of spacetime. There is one time and nine space
dimensions, and there are therefore six additional space dimensions which one rolls up. (To imagine more
than one time dimension is rather difficult and this idea is not pursued here.)

Particles in a one-dimensional world can only move in one direction, and they have a neighbor to the
right and a neighbor to the left, but cannot pass each other. If one zooms in, there may be smaller things
than these particles, and the one-dimensional world may turn out not to be a line but a cylinder such
that these smaller things can move in two perpendicular directions. This is the most elementary kind of
compactification.

Now assuming the world to be two-dimensional with an additional third compact dimension. This third
direction can be a little bit of space between a two-dimensional floor and a parallel two-dimensional
ceiling such that there is some thickness between floor and ceiling. Having edges like this makes troubles
for strings because the fluctuate may get bigger than the distance between floor and ceiling. If, however,
the floor and the ceiling are identified such that one can go from floor to ceiling and ends up at the floor
again, then there is no edge anymore and the third dimension has the topology of a circle. This is an
example of compactification of one out of three dimensions.

Compactification of two dimensions with avoiding edges identifies points on the floor
with points on the ceiling and points on the back with points on the front. Similarly,
any number of spatial dimensions can be compactified. This procedure is called toroidal
compactification because a torus is the simplest way for compactifying dimensions. A
torus in two dimensions can be cut one way to become a cylinder, and the cylinder can be cut again to
become a rectangle. Thus, a rectangle is topologically the same as a torus if on identifies the left and
right side to be the same as well as the top and bottom side to be the same. Depending on the angle
respectively on the ratio of x- and y-direction, a particle moving on a straight line will either end at some
time again on the same track if the ratio is rational or move for ever on different tracks if the ratio is
irrational. There are geometries other than tori for compactifying two dimensions. A sphere, for example,
can also be used, but spheres turned out to be not a good choice for compactification of two dimensions.
In higher dimensions, tori also exist and can compactify more than two dimensions.

A two-dimensional torus can be described by three numbers called moduli. One can either take the width
and the height or the area and the aspect ratio for the first two. Because two tori where width and height
have been exchanged are geometrically the same, the aspect ratio can only vary from 1 to ∞ or 0 to 1,
but not from 0 to ∞. The area and the aspect ratio are enough to specify a torus built from a rectangle,
but a cylinder can be twisted before the round sides are glued together. This corresponds to a torus build
from a oblique-angled parallelogram. The third modulus is the angle of the parallelogram.

All these tori have a flat geometry or – correctly stated – can be given a flat geometry. This is not true
for a donut because it is an object in three dimensions and has positive or negative curvature depending
on the area. A torus as a two-dimensional topology can be given a flat geometry and therefore also a
Ricci flat geometry such that string theory is well-defined on a torus. It is by far the easiest way to hide
dimensions, but it is not useful for the real world which is more complex.

There are other Ricci flat manifolds where one can compactify the six spatial dimensions of superstring
theory. Especially, there are the Calabi–Yau manifolds which have very special properties where string
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theory is a good theory. They have enough complexity and lack of symmetry such that they look more
like the real world. However, they are mathematically to difficult for these lectures.

For simplicity, the one-dimensional world with one curled second dimension is used here. A particle
moving in this world can have a component in the ordinary dimension and a component in the compactified
dimension. The momentum has therefore a component along the large dimension and a component in
the curled dimension, but this second component is quantized because momenta on periodic spaces are
always quantized. If 2πr is the circumference of this compactified dimension and Pc is the momentum in
this direction, then Pcr is like angular momentum which is quantized as Pcr = n~ such that Pc = n~/r is
also quantized. If the particle is massless then E = c|Pc|, and the energy is also quantized. If the particle
is only moving in this curled direction, the particle seems to stand still but has energy. This energy is
now the mass, and it is quantized. The smaller r is, the bigger is the spacing between the quantized mass
levels because the mass is proportional to n/r. Theoretically, one could measure the spacing between
mass levels and determine the radius r of the curled dimension.

One can have a different kind of particle in the compact dimension which looks from the outside – the
big dimension – just like a particle, but is wound around the compact dimension as a closed string. It
can move up and down the big dimension. Its mass does not come from a motion around this compact
dimension but from the energy due to the stretching. This energy is proportional to the length of the
string and therefore to the radius r or the circumference of the curled dimension. Because the string can
be wound several times around this curled dimension, the energy is proportional to nr where n is called
winding number. If the string has an orientation, it can be wound positively or negatively around the
curled direction such that the winding number can be positive or negative. This second kind of strings
have mass not proportional to 1/r as the first kind of strings above but proportional to r. If both kinds
are available, one has mass levels with big spacing for small values of r and one has small spacing for
the same value of r. Thus, there are two different kinds of spectra for these different kinds of particles,
one moving around the curled dimension called Kaluza–Klein particles and one wound around the curled
dimension. The first kind has been proposed before the string theory was invented, and the second has
been proposed by physicists working on string theory. Both complementary kinds of particles together
would allow to determine properties of the compact dimension.

If there are compact directions in space, winding numbers cannot be avoided. A closed
string can wind around the compact torus as in the figure on the right side. This takes
energy for stretching the string, and one can collide Kaluza-Klein particles hard enough
such that various things can happen including this kind of stretching. There is still no
winding number, but the two ends may join now and build two closed strings with opposite winding
numbers. They are independent and one can move far away such that one string remains with winding
number one. This is similar to electric charge. The net electric charge might be zero in the whole universe,
and the net winding number may also be zero in the whole universe, but that does not mean that there
are no electrons.

5.3 T-Duality

In the following it is assumed that the compact directions form a torus and that strings are closed and
oriented. If a string splits into two strings, both strings must have the same orientation. Orientation
is similar to electric charge. One can compare two strings and determine whether they have the same
or different orientation. One cannot say whether two strings with the same orientation have positive or
negative orientation, but one can say whether they have the same or different orientation. Thus, if one
replaces all strings with strings of opposite orientation, physics would be the same.

Strings can exist in two different ways on a compact dimension. Either
they are positioned on the torus or they are wound around the torus.
They can be wound in two direction, and one is said to have positive
winding number and the other is said to have negative winding number.
Two wound strings can join by going from (a) to (b) in the figure on
the right side or split by going from (b) to (a) in the figure if they have
opposite orientation, and they can join by going from (c) to (d) in the figure or split by going from (d) to
(c) in the figure if they have the same orientation. The total winding number is preserved in both cases,
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because closed strings can only change their winding number in one of these ways. Wound strings have
a certain tension which is energy per unit length. With the winding number w, the energy of a wound
string is proportional to wr. Strings which are not wound have a quantized energy due to the component
of momentum in the direction of the compact dimension which is proportional to n/r for an integer n.

If one tries to measure r, the radius of compactification, the difficulty is that one cannot distinguish
between particles with momentum and particles with winding number given the energy level. Thus, there
is an ambiguity, and it looks like a kind of symmetry where r is replaced by 1/r and momentum by winding
number for closed strings. This symmetry of spectrum only exists for compact directions, of course, but
it is a fundamental property of the theory of closed strings that momentum and winding number can
be interchanged and that r cannot be made arbitrarily small because at a certain point momentum and
winding number are interchanged. Remarkably, the entire theory with scattering amplitudes and the
spectrum of particles is symmetric under this interchange. This symmetry is called T-duality where T
stands for torus. Theories where momentum and winding number are interchanged behave exactly the
same way.

A string moving consists of all its points, and they can have different velocities dy/dτ for the compact
direction y. A string which is wound in the simplest way completely in the y-direction can be described
by σ = y/r. In this case, ∂σ/∂y = 1/r. Thus, the numbers n and w can be expressed as

n = r

∫
∂y

∂τ
w =

1

r

∫
∂y

∂σ
(5.3)

showing that T-duality means replacing n by w, r by 1/r and ∂y/∂τ by ∂y/∂σ. All observable quantities
do not change if these three quantities are interchanged. This is an exact symmetry of string theory.

5.4 Closed Strings and Similarity to Electric Charge

The orientation is very similar to electric charge. Two strings with the same orientation will repel,
and two strings with different orientation will attract. The attraction and repulsion comes from the
electromagnetic field which is strongly linked to photons. In the case of orientation of strings, the
attraction and repulsion comes from the gravitation, but gravitation in the compact dimensions and not
the big dimensions. The electric and magnetic field are describable in terms of a vector potential Aµ in
four dimensions.

In gravity, the metric tensor gMN in a five-dimensional world with one compact dimension has the
components gµν as the metric tensor in ordinary four-dimensional spacetime for the big dimensions and
gµ5 = g5µ and g55 in addition for the fifth dimension. The quantity gµ5 is a four-vector and can be
identified with Aµ, and g55 is a scalar called dilaton and is usually denoted by Φ. The metric tensor is a
field which can vary from place to place, gµν is the usual gravitational field that can vary from place to
place, gµ5 becomes an analog to the electromagnetic field that can vary from place to place, and g55 is a
scalar that can vary from place to place.

This scalar is the size of the fifth direction shown in the figure on the right side.
The fifth direction is big if g55 is big, and is small if this value is small. One can
imagine waves in space which are not electromagnetic or gravitational waves but
waves of the varying size of the fifth dimension. The ordinary vacuum does not
have such waves, and g55 is fixed, but in general it can vary from place to place.

The quantity gµ5 is a gravitational field, and the sources of the gravitational field are energy and mo-
mentum. Especially, the values with mixed indices are created by momentum, and the source of gµ5 is
the flow of momentum in the fifth direction. Thus, the momentum quantum number n in (5.3) is analog
to the electric charge, and it is connected to the graviton.

Also the winding number w has the property that opposite winding numbers attract and equal winding
numbers repel similar to electric charge, but it is not the same electric charge as the momentum quantum
numbers n. It is as if there are two kinds of electromagnetisms, two kinds of photons and two kinds of
charges. The “photon” related to the momentum quantum number is a piece of the gravitational field
and is just the graviton polarized along the µ5-direction. The “photon” related to the winding number
has to do with the spectrum of the closed string. The operator a standing for the creation operator a+
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which creates a unit of excitation. Firstly, a has a direction i in space which can be either one of the
three big dimensions x or the compact dimension y, and it is written as ai. Secondly, ai has a frequency
n which tells how much energy is in the oscillation, and it is written ain. Thirdly, the string has an
orientation such that the wave can go in one or the other direction, and this is written here as ain(R)
and ain(L) for left- and right-moving waves. The rule is that the amount of energy in the left- and the
right-moving waves must be the same.

The first state is the one with no energy at all which is the tachyon and has minus two units of energy,
and this is not wanted. The next level of excitation is ai1(L) |0〉 or ai1(R) |0〉 in any direction i, but they
both do not fulfill the rule that the amount of energy in the left- and right-moving waves must balance.
Thus, the first legitimate excitation is ai1(L)aj1(R) |0〉. One or both of these indices i and j can now be in
this fifth compact direction. In the above discussion, these directions were only ordinary directions, and
ai1(L)aj1(R) |0〉 corresponded to gravitons which have polarizations characterized by the two directions
in space. If one of these direction is now compact, this expression corresponds to a photon but there
can be two different types of objects corresponding to ai1(L)a51(R) |0〉 and ai1(R)a51(L) |0〉. The object
corresponding to the sum of both is identified with the graviton, and the difference is identified with
another field which has also the structure similar to a photon and which is the electromagneticlike field
whose sources are the winding numbers. Thus, one linear combination is associated with the momentum
quantum number n and the graviton which are the field quanta of the gravitational field gµν , and the
other linear combination is associated with the winding number w and a field called the Kalb–Ramond
field bµν which is not the graviton.

To summarize, ai1(L)a51(R) |0〉 + ai1(R)a51(L) |0〉 corresponds to the momentum quantum number and is
identified with the gravitational field and the graviton, ai1(L)a51(R) |0〉 − ai1(R)a51(L) |0〉 corresponds to
the winding number and is identified with the Kalb-Ramond field, and a51(L)a51(R) |0〉 is the one that
behaves like a scalar and corresponds to the dilaton as the field quanta of Φ. The T-duality is finally
the interchange of n and w, of r and 1/r, of ∂x/∂σ and ∂x/∂τ , and of gµ5 and bµ5. It is not clear at
the moment whether the real world has such fields, and it is just a mathematical construction and an
exploration of the mathematics of this theory.

5.5 D-Branes

The D in D-branes stands for Dirichlet, and the brane is related to membrane. There is also a value
n in it for its dimension in space. A string is a one-brane, a membrane is a two-brane, a solid three-
dimensional object which may be embedded in higher dimensions is a three-brane. They are not just
made-up things. They were essential to the consistency of the theory. The result of knowing about them
has been an enormous number of equivalences between different theories in the area of string theory which
have been derived. This enormous number of equivalences found turned out to be an enormous numbers
of equivalences between different kinds of geometric structures, and the mathematicians were surprised.
D-branes have to do with open strings. Open strings do not have stable winding numbers. The question
is what happens to the open strings when one applies the process of T-duality.

Open strings fulfill the Neumann boundary condition ∂x/∂σ = 0 and ∂y/∂σ = 0 at their two ends where
x stands for all the ordinary dimensions and y for all the compact dimensions. This is because otherwise
there would be a force acting on the last point particle of the string, and this last point particle gets
lighter and lighter when going to the limit of an infinite number of point particles such that this force
would accelerate this last point particle more and more and finally infinitely.

For closed strings, T-duality means replacing ∂y/∂τ by ∂y/∂σ and this changes the Neumann boundary
conditions to ∂y/∂τ = 0 at the ends of the string for the compact directions. It follows that the ends
of the strings are not allowed to move, and therefore there must be objects around that can nail down
the ends of the strings. One starts with a theory where open strings can move freely, and after T-duality
their ends are stuck in the compact directions. The objects that hold the ends of the strings is called a
D-brane. It is a movable object which acts as an anchor point for the ends of the strings. If it is movable
and it is also bendable.

Assuming there are nine spatial dimensions and one of them is compact. The dimensionality of the D-
brane would be eight because one has pinned down one direction and left the other eight directions free
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to move around. To understand it, one can take a table and attaches an object to it which is now free to
move in the two directions on the table but is constrained in the third direction. Thus, if one constrains
one of nine dimensions, this creates an eight-dimensional surface in which the string can move around,
and each direction which is constrained removes one direction in which the string can move freely. If all
directions are constrained, this gives a D0-brane which is a point and is also a new kind of particle.

If one shrinks the radius r of the compact direction more and more, the T-dual radius gets larger and larger
until it is so big that it can be taken as a non-compact ordinary dimension. Thus, even in non-compact
dimensions there must be anchors for strings.

A D0-brane is just a point where one or both ends of a string can attach. A D1-brane is a line which may
not be a straight line because it has to be bendable. It is a one-dimensional object, but it is not the same
as a string because D1-branes are as anchors which nail strings down much heavier. A D2-brane is called
a membrane. A D3-brane in the three-dimensional space fills space, and strings attached to it can just
freely move in space. It is often said that ordinary open string theory is string theory on a space-filling
D3-brane.

D-branes are the source of many applications in string theory. A D2-brane is used here
to illustrate this. A D2-brane with no strings attached is empty, and the one shown in
the figure on the right side has two strings attached which are free to move around as
long as their endpoints are still on the D2-brane. These strings are assumed to be oriented, and two
strings with compatible orientation can join. They are constrained to the surface, but otherwise they
can behave as strings do in ordinary open string theory. Creation and annihilation of particles can be
described. The mathematics of the interactions of these particles looks very much like quantum field
theory, and these particles behave like photons in a lower-dimensional theory. For low energies where the
strings are not much excited it is simply quantum field theory where the particles are the open strings.
One application of D-branes is to define quantum field theory.

There can also be two branes, for example, two parallel D2-branes. One can move them closer and closer
together until they touch and form a compound brane. Another example is three parallel D2-branes
which can have exaltations meaning ordinary strings. If one calls these three parallel D2-branes red,
green, blue, an oriented string can start on red and end on red such that it may be called a red-red
string, but it can also start on red and end on green or blue such that it may be called a red-green or
red-blue string. In this case particles can be labeled by two colors. This looks like gluons in quantum
chromodynamics, and the rules are exactly the same. A gluon has two ends representing a color and an
anticolor. A quark is a string that has only one end fixed in a brane while the other end is at infinity
or at least at a distant brane of a different kind. Thus, a quark is either a string coming in or a string
going out of the brane. When a string going out and a string coming in meet each other, they can join
and just disappear out of the brane, and this is an annihilation of a quark and an antiquark.

If there is only one D-brane, this is like quantum electrodynamics. It has only photons. Strings with
both ends fixed in the brane are photons, and string with only one end fixed in the brane while the
other end goes to infinity or so represent charge respectively electrons or positrons depending on their
orientation. When an electron and a positron come together, they can annihilate. As mentioned above,
there are D1-branes also called D-strings which are heavier than ordinary strings, and the question arises
whether a D-string can also end on a brane like other strings. The answer is yes. They would represent
magnetic monopoles. The universe is from the current point of view a D3-brane and therefore also the
three colors of quantum chromodynamics are D3-branes. If a D-string which is also oriented comes from
another dimension, people living in this universe see it as a magnetic monopole.

6 Conclusions and Outlook

6.1 Results of String Theory

String theory has been developed by many people over the last at least twenty-five years. Quantum
chromodynamics today is studied in the context of string theory. Calabi–Yau manifolds allow more
complicated asymmetries than the toroidal compactifications shown here. These asymmetries are needed
to describe certain phenomena in physics. String theory as it stands today made a full circle from a
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theory of hadrons to a theory of gravitons, and now has become a theory of quantum chromodynamics
in a ten-dimensional space with branes. However, it has not yet brought an understanding of the particle
spectrum, and that is probably because it is just too complicated.

6.2 Reductionism

Reductionism is the philosophical assumption that things are made out of little things, and little things
are made out of even more little things. Molecules are made out of atoms, atoms are made out of electrons
and nuclei, nuclei are made out of protons and neutrons, protons are made out of quarks and so on. A
further assumption is that things get simpler and simpler as one goes to smaller and smaller things.
String theory and other developments in modern physics mark the end of reductionism.

Before one predicts the end of reductionism, one can see how far reductionism and especially the as-
sumption that things get simpler when going to smaller and smaller things can lead. Particle physics
should be simple, but it is not. One can ask how many different particle are there, and how many of
them are unexplained. There are approximately seventy-five different particles in the standard model of
which about twenty or a bit less are independent and have no tight relation between each other. There
are about twenty distinct parameters in the sense of unexplained constants which have to go into the
theory, but the theory is definitively incomplete because it does not have gravity, dark matter, particles
that are necessary for inflation and it has a terrible fine-tuning problem. Theories like supersymmetry
try to overcome these short-comings, and it is possible that supersymmetry is discovered one day, but if
it does, it adds about a hundred plus n new parameters where n is an unknown number. Thus, either
physicists have not yet reached the bottom, or this is the end of reductionism.

There is a more theoretical fact based on quantum field theory and string theory. When exploring
models of quantum field theory with one dimension of time and one dimension of space, one can start
with particles which are fermions and corresponding fermion fields Ψ. Putting two fermions close together
gives a boson, and therefore a hydrogen atom, for example, consisting of a proton and an electron is itself
a boson. Thus, there are also boson fields Φ, but one cannot build fermions with only bosons because
any number of bosons gives a boson. If one plots the field Φ, a kink in the field where the field smoothly
jumps represents a fermion. Kinks in a boson field are extended, thick, massive and much heavier than
the bosons. The question is now whether the bosons or the fermions are the more basic objects. There
are parameters in such a theory, and it turns out that for some ranges of parameters it is much more
convenient to think of the fermions as the building blocks and for other ranges of parameters bosons are
much more efficient for studying the theory. One parameter is the coupling constant g. Starting with low
values for g makes fermions the better starting point because they are easy to deal with, easy to study
and they are small objects because the kink is small. Increasing the coupling constant g makes the kink
to spread out and gets less and less pointlike, but the bosons start to behave more and more like simple,
elementary objects.

This situation in a world with a one-dimensional space is known for a long time. It is assumed that things
like that exist in elementary particle physics with electric and magnetic monopoles. An electric monopole
could be an electron with an electric field around it. The electric charge of an electron is very weak.
Measured in photons it radiates when suddenly stopped it is about one photon per hundred electrons.
This value is called the fine-structure constant. As a consequence, the electric field of an electron is
also weak and does not do much to the surrounding space. It is also believed that magnetic monopoles
exist, because they come up in so many theories, but they have never been discovered. A magnetic
monopole is like the end of a bar-magnet where the bar-magnet is so thin that it cannot be seen. The
magnetic field would come out of it like the electric field for the electron. The magnetic monopoles have a
magnetic charge which is very large. The force between two magnetic monopoles would be ten-thousand
times larger than the force between two electrons at the same distance. Therefore, a magnetic monopole
creates a very strong field with heavy processes going on inside. They have not yet been discovered
because they are to heavy.

The mathematics of quantum electrodynamics with electric and magnetic monopoles is completely unclear
about the question which of them is the more elementary particle. It depends on the fine-structure
constant α which is basically the square of the electric charge. If α is very small compared to one, the
electric monopole is more basic because it is simple while the magnetic monopole has a complex structure.
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If one could change α and increase it, the field around the electron would get stronger, the electric charge
larger, and the electric field would become more complex. At the same time, the magnetic field would get
weaker, the magnetic charge smaller, and the magnetic field would behave simpler. The electric monopole
would get heavier, and the magnetic monopole would get lighter. For very large values of α, the two
would just interchange.

Calculus assumes that functions are smooth and looking at smaller and smaller intervals make them
simpler. Quantum fields are different because they fluctuate on every scale and are never smooth. This
is one reason why quantum fields are so difficult. Calculus breaks down.

6.3 Building Blocks in String Theory

String theory has an answer to the question of what are the fundamental building blocks which is obviously
strings. However, there are also D-branes which are mathematically needed by the theory and which are
quite heavy.

Point particles are zero-dimensional object like D0-branes. Any number of ordinary strings can end on
a D0-brane, and D0-branes typically have strings attached to them. If one would probe a D0-brane by
scattering something of it, one would find out that it has a collection of strings attached to it. In fact,
the harder one probes it the more strings one would find such that one would come to the conclusion
that a D0-brane is made out of strings. However, it is heavy, much heavier than an ordinary string.

A D1-brane which is also called a D-string is like an ordinary string, but it is much heavier measured in
units of length. Like a D0-brane, it is a place where ordinary strings can attach. Ordinary strings and
D-strings are very much like electrons and magnetic monopoles. The question whether string theory has
parameters or not is discussed later. Here it is assumed that string theory has a parameter g which is the
coupling constant corresponding to the probability that a string wiggling around breaks into two strings.
If g is very small, then ordinary strings are very light, thin and look very fundamental, and the D-string
is heavy, complicated and full of ordinary strings. If one starts increasing g, the ordinary string tends to
break off little pieces which do not disappear but hang around and form a kind of atmosphere around the
string. It becomes more and more complicated and develops structure. At the same time the structure
of the D-string gets simpler and thinned out because it becomes harder and harder for the D-string to
produce ordinary strings. At some point when g is about one, they start to look exactly like each other.
For even larger values of g, the D-string gets very simple and becomes a thin line-like object.

When g is very small, ordinary open strings form closed string, and as they form little loops, they create
particles such as gravitons and photons. As g gets larger and larger, the ordinary strings get more and
more massive, and eventually they turn into black holes. The remaining D-strings get lighter and lighter,
and the gravitons are made out of the D-strings. The duality between ordinary strings and D-strings
is called S-duality. One might say that the coupling constant is small such that it makes sense to take
the ordinary strings as the fundamental building blocks, but the coupling constant can vary in space
because it is a field and satisfies field equations. Thus, in this mathematically idealized string theory it is
possible that in one place the ordinary strings are simple and fundamental, in other places the D-strings
are simple and fundamental, and in between nothing is simple and fundamental.

In electrodynamics, an electron moving in time emits and absorbs photons according to the fine-structure
constant. The photons between being emitted and absorbed may split into an electron and a positron
for a while, and this electron emits and absorbs photons. This is an unending hierarchy at smaller and
smaller distance scale of structure within the electron. As long as the fine-structure constant α as the
coupling constant is weak, this is a relatively small effect and the electron in the laboratory looks pretty
much pointlike and it is difficult to scatter electrons to see this structure, but at higher energies, this
structure can be made visible.

6.4 Even-Dimensional D-Branes

There are different versions of string theory. In one of them all the D-branes are odd-dimensional.
In another one all D-branes have to be even-dimensional. No string theory has both odd- and even-
dimensional D-branes. Thus, in an even-dimensional string theory there are no D-strings, but there are
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pointlike D0-branes and there are ordinary strings. This theory does something very different as g starts
to get large. The D0-branes could not become strings and vice versa, but something bizarre happens.

As g gets large, a new spatial dimension materializes, or better stated, a very small compact dimension
starts to expand. To visualize it, it is assumed that there are two big dimensions of space plus one very
small compact dimension which is not noticeable by physicists living in this world. When g gets larger
and larger this compact dimension gets larger and larger until the physicists living in this world can no
longer ignore it. When g starts growing the D0-branes get lighter and lighter similar to the D-strings in
the string theory with odd-dimensional D-branes, and they turn into the ordinary gravitons. Thus, again
the complex objects D0-branes turn into the simple objects gravitons. There are also D2-branes in this
theory. They can exist as membranes in the two-dimensional world, but they can also be membranes with
one direction in the compact dimension which look like strings in this space with two large dimensions.
These strings turn into membranes when the third dimension becomes recognizable. They are very heavy
because there is so much material there in this third dimension. Thus, the light strings turn into heavy
membranes, and the D0-branes turn into very light gravitons.

By developing this string theory, physicists found theorems they could not prove, and mathematicians
figured out that they have a proof for this theorems but did not know where to apply and use them.
Because g can vary in space, it is possible that in one place the world looks two-dimensional with D0-
branes and strings while in other places the world looks three-dimensional with gravitons and heavy
membranes. In this example and in the previous examples it is not clear which objects are fundamental
and are the building blocks for more complex objects, and which objects are the complex objects built
by these fundamental objects. There may be more fundamental objects than strings and D-branes which
build these things, but nobody knows so far.

6.5 The Duality of Electric and Magnetic Monopoles

If strings are attached to a D3-brane, this looks as if they live in a three-dimensional world, and the
D3-branes behave in many respects as is they are ordinary three-dimensional spaces. The D3-brane can
have wiggles on it and strings attached to it. Two strings can move around and join to form a single
string, and then they can go back to be two separate strings. These strings scatter and do all kinds
of things particles would do in ordinary quantum field theory in three dimensions. If an ordinary open
string comes from the outside of the three-dimensional space of this D3-brane and attaches one end to it,
people living in this world would see an electrically charged particle. Also a D-string can end with one
side on a three-dimensional brane. It also looks like a particle, but a fatter and heavier particle which
would be seen as a magnetic monopole. Thus, the S-duality which connects the ordinary strings with
the D-strings is nothing but the duality which connects the electric charges with the magnetic charges of
ordinary field theory.

In a spacetime with one time and several space dimensions of which two are compact and the others are
big, a D2-brane with one direction in a big dimension and the other in a compact dimension looks like a
string to physicists living in this world. If the compact dimension gets thinner and thinner, this object
looks more and more like a string and gets lighter and lighter. A D2-brane with one direction in a big
dimension and the other in the second compact dimension looks similar. If this compact dimension is
much larger than the other one, the object to a physicist is a D-string. By changing the sizes of the two
compact dimensions, ordinary strings become D-strings and vice versa. The two sizes of the compact
dimensions can vary in space and in time. The fine-structure constant α is the ratio of these two sizes.

6.6 String Theory as a Network of Ideas

These are just examples of the huge network of ideas that emerged out of string theory. These ideas
sometimes connect two different string theories, sometimes they connect a string theory with quantum
field theory and so on, but most of it has very little to do with what physicists see in the laboratory.
These precise features are features of an idealization which is the supersymmetric string theory which is
also called superstring theory. With the symmetry between bosons and fermions and other unrealistic
properties and simplifications, it does not describe the real world in a similar way as circular orbits do
not describe the elliptical orbits of real planets.
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