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Abstract

The video channel with the title “Professor M does Science” in YouTube offers a simple step-
by-step but all the same very valuable and rigorous introduction into the world of quantum physics.
This script covers the physics of identical particles and helps to digest the topic covered by a group
of those videos but is not meant as a replacement for them.

7 Creation and Annihilation of Identical Particles

7.1 Identical Particles

Particles are identical if they have the same name. Thus, all electrons are identical but electrons and
photons are different particles. Exchanging any two identical particles in a system leads to exactly the
same physics. In classical physics identical particles are distinguishable but in quantum physics they are
not. More formal, two particles are identical if their defining intrinsic properties are the same. Intrinsic
properties are mass, charge, spin, magnetic moment and so on. All electrons are identical because they
have the same mass, charge and spin. Similarly, all muons are identical because they have the same mass,
charge and spin. However, electrons and muons are not the same because the have the same charge and
spin but not the same mass. Also the electron and the positron are not the same because they have the
same mass and spin but not the same charge. The definition of identical particles does not only apply
to elementary particles but also to protons consisting of quarks and hydrogen atoms consisting of quarks
and electrons.

The fact that two electrons are identical does not mean that they are in the same quantum state. Two
electrons, for example, may move with different momenta, or one may be bound in a hydrogen atom
while the other is free. Exchanging two identical particles does not affect the properties of the system.

In classical physics two identical particles are distinguishable because one knows the exact paths of them
such that one can say where each particle is at any point in time. In quantum physics the situation is
different because it is impossible to know the exact trajectories of particles. Two wave packets initially
separated in space overlap during a collision. If a detector detects one of them moving in one direction
then the other must move in the opposite direction in the center of mass frame. However, one does
not know which particle is which because after an overlap they are no longer distinguishable. This is a
fundamental result and not a limitation of the measuring equipment.

7.2 Tensor Products

If one wants to describe more than one particle in three dimensions, tensor products of vector spaces are
needed. The tensor product of the vector spaces V1 and V2 is written as V = V1 ⊗ V2 and states that
for every vector |ψ〉 ∈ V1 and every vector |ϕ〉 ∈ V2 there is a vector |ψ〉1 ⊗ |ϕ〉2 ∈ V where the tensor
product obeys the properties:
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(1) It is linear with respect to scalar multiplication such that
a(|ψ〉1 ⊗ |ϕ〉2) = (a |ψ〉1)⊗ |ϕ〉2 = |ψ〉1 ⊗ (a |ϕ〉2) for a ∈ C.

(2) It is distributive with respect to vector addition such that
(|ψ1〉1 + |ψ2〉1)⊗ |ϕ〉2 = |ψ1〉1 ⊗ |ϕ〉2 + |ψ2〉1 ⊗ |ϕ〉2 and
|ψ〉1 ⊗ (|ϕ1〉2 + |ϕ2〉2) = |ψ〉1 ⊗ |ϕ1〉2 + |ψ〉1 ⊗ |ϕ2〉2.

(Note that |ψ〉1 ⊗ |ϕ〉2 = |ϕ〉2 ⊗ |ψ〉1 because of the indices.)

Given a basis {|uj〉} in V1 of dimension N1 and a basis {|vk〉} in V2 of dimension N2, {|uj〉1 ⊗ |vk〉2} is a
basis in V = V1 ⊗ V2 of dimension N1 ·N2. A general vector |ψ〉1 ⊗ |ϕ〉2 ∈ V becomes

|ψ〉 =
∑
j

cj |uj〉

|ϕ〉 =
∑
k

dk |vk〉

⇒ |ψ〉1 ⊗ |ϕ〉2 =

∑
j

cj |uj〉1

⊗(∑
k

dk |vk〉2

)
=
∑
jk

cj dk |uj〉1 ⊗ |vk〉2

where cj dk are the expansion coefficients. An arbitrary vector |χ〉 ∈ V can be written as

|χ〉 =
∑
jk

ajk |uj〉1 ⊗ |vk〉2

and the question arises whether |χ〉 can always be decomposed as a product |ψ〉1 ⊗ |ϕ〉2 where |ψ〉 ∈ V1
and |ϕ〉 ∈ V2. The equality ajk = cj dk for the coefficients would have to be satisfied. The answer is no
as

|ψ〉 = c1 |u1〉+ c2 |u2〉
|ϕ〉 = d1 |v1〉+ d2 |v2〉

}
|ψ〉1 ⊗ |ϕ〉2 =

{
c1d1 |u1〉1 ⊗ |v1〉2 + c1d2 |u1〉1 ⊗ |v2〉2 +

c2d1 |u2〉1 ⊗ |v1〉2 + c2d2 |u2〉1 ⊗ |v2〉2

with

|χ〉 = a11 |u1〉1 ⊗ |v1〉2 + a12 |u1〉1 ⊗ |v2〉2 + a21 |u2〉1 ⊗ |v1〉2 + a22 |u2〉1 ⊗ |v2〉2
?
=

1√
2

(
|u1〉1 ⊗ |v1〉2 − |u2〉1 ⊗ |v2〉2

)
shows because a11 = c1d1 = 1/

√
2, a12 = c1d2 = a21 = c2d1 = 0, a22 = c2d2 = −1/

√
2 is not possible as

two values among c1, c2, d1, d2 must be zero. States like 1/
√

2 (|u1〉1 ⊗ |v1〉2 − |u2〉1 ⊗ |v2〉2) are called
entangled and play an important role in quantum mechanics.

The scalar product of |ψ〉1 ⊗ |ϕ〉2 , |ψ′〉1 ⊗ |ϕ′〉2 ∈ V with |ψ〉 , |ψ′〉 ∈ V1 and |ϕ〉 , |ϕ′〉 ∈ V2 is defined as(
1〈ψ| ⊗ 2〈ϕ|

)(
|ψ′〉1 ⊗ |ϕ

′〉2
)

=
(
1〈ψ|ψ

′〉1
)(

2〈ϕ|ϕ
′〉2
)

and with {|uj〉} ∈ V1 such that 〈uj |um〉 = δjm and with {|vk〉} ∈ V2 such that 〈vk|vn〉 = δkn(
1〈uj | ⊗ 2〈vk|

)(
|um〉1 ⊗ |vn〉2

)
=
(
1〈uj |um〉1

)(
2〈vk|vn〉2

)
= δjmδkn

proves that the basis {|uj〉1 ⊗ |vk〉2} is also orthonormal.

The next question is how the tensor product Â1 ⊗ B̂2 of an operator Â1 acting on V1 and an operator
B̂2 acting on V2 act on V = V1 ⊗ V2. Defining(

Â1 ⊗ B̂2

)(
|ψ〉1 ⊗ |ϕ〉2

)
=
(
Â1 |ψ〉1

)
⊗
(
B̂2 |ϕ〉2

)
(7.1)

such that the operators only act on the states in their own state space does not yet cover entangled states
but (

Â1 ⊗ B̂2

)
|χ〉 =

(
Â1 ⊗ B̂2

)∑
jk

ajk |uj〉1 ⊗ |vk〉2 =
∑
jk

ajk
(
Â1 ⊗ B̂2

)
|uj〉1 ⊗ |vk〉2

=
∑
jk

ajk
(
Â1 |uj〉1

)
⊗
(
B̂2 |vk〉2

)
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covers all states |χ〉 =
∑
jk ajk |uj〉1⊗ |vk〉2 in V1⊗V2. An operator Â1 acting on V1 acts on V = V1⊗V2

as Â1 ⊗ I2 such that(
Â1 ⊗ I2

)
|uj〉1 ⊗ |vk〉2 =

(
Â1 |uj〉1

)
⊗
(
I2 |vk〉2

)
=
(
Â1 |uj〉1

)
⊗ |vk〉2

and |vk〉2 is left untouched. Similarly, an operator B̂2 acting on V2 acts on V = V1 ⊗ V2 as I1 ⊗ B̂2 and
leaves vectors in V1 untouched.

Notation is often simplified. Instead of |ψ〉1 ⊗ |ϕ〉2 one simply writes |ψ〉1 |ϕ〉2 or even |ψ〉 |ϕ〉 and |ψ,ϕ〉
where it is assumed that the first vector belongs to the first vector space and the second to the second one.
As an example, the three vector spaces V1 for x, V2 for y, V3 for z as the tensor product V = V1⊗V2⊗V3
should contain vectors |x〉1 ⊗ |y〉2 ⊗ |z〉3 but they are usually written in one of the forms |x〉1 |y〉2 |z〉3,

|x〉 |y〉 |z〉, |x, y, z〉 or |r〉. Similarly for operators, one uses Â1B̂2 instead of Â1 ⊗ B̂2 and Â1I2 or Â1

instead of Â1 ⊗ I2.

7.3 Eigenvalues and Eigenstates in Tensor Product State Spaces

Given the eigenvalue equations Â |ψ〉 = λ |ψ〉 in V1 and B̂ |ϕ〉 = µ |ϕ〉 in V2 the operator Ĉ acting on
V = V1 ⊗V2 is assumed to be Ĉ = Â1 ⊗ I2 + I1 ⊗ B̂ as the sum of two tensor products and to satisfy the
eigenvalue equation Ĉ |χ〉 = ω |χ〉. This special form of Ĉ occurs in physical systems such as

(i) particles moving in three dimensions with the example Ĥ = Ĥx⊗Iy⊗Iz+Ix⊗Ĥy⊗Iz+Ix⊗Iy⊗Ĥz

of the three-dimensional harmonic oscillator,
(ii) multi-particle systems with the example Ĥ = ĤCoM⊗ Irel + ICoM⊗ Ĥrel of two particles interacting

via a potential that depends on their relative position in the center-of-mass coordinates.

The ket |ψ〉1 ⊗ |ϕ〉2 ∈ V = V1 ⊗ V2 is an eigenstate of Ĉ as

Ĉ |ψ〉1 ⊗ |ϕ〉2 =
(
Â1 ⊗ I2 + I1 ⊗ B̂

)
|ψ〉1 ⊗ |ϕ〉2 =

(
Â1 |ψ〉1

)
⊗
(
I2 |ϕ〉2

)
+
(
I1 |ψ〉1

)
⊗
(
B̂2 |ϕ〉2

)
= λ |ψ〉1 ⊗ |ϕ〉2 + |ψ〉1 ⊗ µ |ϕ〉2 = λ

(
|ψ〉1 ⊗ |ϕ〉2

)
+ µ

(
|ψ〉1 ⊗ |ϕ〉2

)
= (λ+ µ) |ψ〉1 ⊗ |ϕ〉2

shows using (7.1). This proves that |χ〉 = |ψ〉1 ⊗ |ϕ〉2 is an eigenstate of Ĉ with eigenvalue ω = λ+ µ.

7.4 Permutation Operators

Permutation operators exchange particles. The mathematics need these operators to capture the symme-
try of identical particles, and permutations are the tools to rearrange ordered elements. A permutation
P : 123→ 312 is written as P312 because the initial state is assumed to be the ordered state 123. For N
elements there are N ! permutations.

As an example, N = 3 particles are assumed and the state space is therefore V = V1 ⊗ V2 ⊗ V3 with
the basis {|ui〉1 |uj〉2 |uk〉3} ∈ V. There are 3! = 6 permutations P123, P312, P231, P132, P213, P321. The
permutation operator acts as

P̂mnp |ui〉1 |uj〉2 |uk〉3 = |ui〉m |uj〉n |uk〉p

on the basis states, and this moves the particle associated with state space V1 to the state space Vm and
so on for the other two particles.

A transposition is a permutation that exchanges two elements and leaves the rest invariant. Transpositions
are Hermitian P21 = P †21, involutory P 2

21 = I and unitary P †21 = P−121 as one can easily show for N = 2
but can also be generalized to any transpositions. Every permutation can be written as the product of
transpositions. The parity of any permutation is even or odd depending on the number of transpositions
needed.

When writing Pα for a general permutation and Tβ for a general transposition one can show that also
permutations are unitary but that not all permutations are Hermitian because transpositions do not
commute in general. A further property is that the adjoint of a permutation has the same parity as the
permutation because the adjoint is just the same sequence of transpositions but in reverse order.
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All permutations for a given N form a group. The identity is the permutation that does not change
anything. The product of two group elements gives another group element because two permutations one
after the other just reorder the elements in a way one can achieve with one permutation. Finally, the
inverse is the permutation that undoes the permutation.

The rearrangement theorem states that if P̂1, P̂2, ... , P̂N ! is a list of all permutations and Pα is one of
them then PαP̂1, PαP̂2, ... , PαP̂N ! contains each element of the permutation group exactly once. Thus,
this reorders the elements but does not duplicate some of them.

7.5 Symmetric and Antisymmetric States of Many Quantum Particles

In quantum systems of identical particles exchanging any two particles does not change the physics.
Symmetric states do not change at all when two particles are exchanged, and antisymmetric states
change only a sign when two particles are exchanged. This captures the key difference between bosons
and fermions.

In an N -particle system V = V1 ⊗ ...⊗VN with the N ! permutation operators P̂α is the state ψ+ totally
symmetric if P̂αψ+ = ψ+ for every permutation P̂α. Totally symmetric states exist in a subspace V+ of
V. If P̂αψ− = ηαψ− for any permutation P̂α where ηα = ±1 depending on whether P̂α is even or odd
then ψ− is a totally antisymmetric state. Totally antisymmetric states exist in a subspace V− of V.

With the definition of the two operators

Ŝ+ =
1

N !

∑
α

P̂α Ŝ− =
1

N !

∑
α

ηαP̂α (7.2)

where the sum goes over all permutations any state can be projected onto V+ with Ŝ+ called symmetrizer
and onto V− with Ŝ− called antisymmetrizer. To prove this the property P̂αŜ+ = Ŝ+P̂α = Ŝ+ and the
property P̂αŜ− = Ŝ−P̂α = ηαŜ− both following from the rearrangement theorem are needed. These
two properties allow to show Ŝ2

+ = Ŝ+ and Ŝ2
− = Ŝ−. Thus, the symmetrizer and the antisymmetrizer

operators are projection operators.

Further, one can prove Ŝ+Ŝ− = 0 such that they project to orthogonal subspaces. Finally, Ŝ+ + Ŝ− 6= I
for N > 2 shows that the two operators do not project to complementary subspaces except for N = 2.
The last point to show is that |ψ′〉 = Ŝ+ |ψ〉 is a totally symmetric state, and this follows from P̂α |ψ′〉 =
P̂αŜ+ |ψ〉 = Ŝ+ |ψ〉 = |ψ′〉. It also follows that any permutation of a ket projects to the same totally
symmetric state because Ŝ+

(
P̂α |ψ〉) = Ŝ+ |ψ〉, and that any permutation of a ket projects to the same

antisymmetric state possibly up to a sign.

If Â1 and Â2 are two observables with Â1 |uj〉 = aj |uj〉 such that {|uj〉} ⊂ V1 and Â2 |uk〉 = ak |uk〉 such

that {|uk〉} ⊂ V2 then Â1 ⊗ I2 → Â1 and I1 ⊗ Â2 → Â2. The permutation operator P̂21 acts as

P̂21Â1P̂
†
21 |uj〉1 |uk〉2 = P̂21Â1 |uj〉2 |uk〉1 = akP̂21 |uj〉2 |uk〉1

= ak |uj〉1 |uk〉2
Â2 |uj〉1 |uk〉 = ak |uj〉1 |uk〉2

such that P̂21Â1P̂
†
21 = Â2 and P̂21Â2P̂

†
21 = Â1. This is true for any observable Ô12 such that one can

write P̂21Ô12P̂
†
21 = Ô21 where Ô12 could be Ô12 = Â1 + B̂2 = Â1 ⊗ I2 + I1 ⊗ B̂2 and Ô21 = B̂1 + Â2, for

example.

A symmetric observable is an observable for which Ô12 = Ô21. This is equivalent to the statement that
the observable commutes with the permutation operator because from P̂21Ô12P̂

†
21 = Ô21 = Ô12 follows

P̂21Ô12P̂
†
21P̂21 = Ô12P̂21, P̂21Ô12I = Ô12P̂21 and P̂21Ô12 = Ô12P̂21. Generalizing this to N particles

allows to define a totally symmetric observable Ô12...N as an observable satisfying
[
Ô12...N , P̂α

]
= 0 for

all permutations P̂α.

Totally symmetric states and totally antisymmetric states are the only allowed states for systems of
identical particles. They are fundamental in areas ranging from condensed matter physics and material
science to chemistry because they all involve multi-particle systems.
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7.6 Exchange Degeneracy

For systems with two identical particles there is an infinite number of kets describing it. However, if one
does predictions using the rules of quantum mechanics different states give different results.

As an example a two-particle system V = V1 ⊗ V2 is used where the particles have a spin 1
2 such that

Ŝz |↑〉z = +
1

2
~ |↑〉z Ŝz |↓〉z = −1

2
~ |↓〉z

are the eigenvalue equations. The state space V for both spins has dimension 4 and the basis states
are {|↑〉1z ⊗ |↑〉2z , |↑〉1z ⊗ |↓〉2z , |↓〉1z ⊗ |↑〉2z , |↓〉1z ⊗ |↓〉2z} or simply {|↑, ↑〉z , |↑, ↓〉z , |↓, ↑〉z , |↓, ↓〉z}. The

operators are Ŝ1z ⊗ I2 and I1 ⊗ Ŝ2z simply written as Ŝ1z and Ŝ2z, respectively.

Assuming that measuring Sz gives +~/2 and −~/2 then one particles is up and one particle is down but
it is not clear which particle is in which state because |↑, ↓〉z and |↓, ↑〉z are possible. The two states are
orthogonal z〈↑, ↓ | ↓, ↑〉z = 0. However, not only these two states are consistent with the measurement but

also any linear combination α |↑, ↓〉z+β |↓, ↑〉z with normalization |α|2+|β|2 = 1. This linear combination
is a superposition state where α and β determine the probability. This means that there are infinitely
many states describing the situation that one particle is up and the other is down, and they all describe
the same physical situation. This fact is called exchange degeneracy.

This means that all the states α |↑, ↓〉z + β |↓, ↑〉z are equivalent similar to a global phase eiϑ |ψ〉. All
physical quantities are independent of a global phase. To understand the problem of exchange degeneracy
one can ask the question what the probability is of getting (+~/2,+~/2) if one measures Ŝ1x and Ŝ2x in
the x-direction. Using |↑〉x = 1/

√
2
(
|↑〉z + |↓〉z

)
gives

|↑, ↑〉x =

(
1√
2

(
|↑〉z + |↓〉z

))
⊗
(

1√
2

(
|↑〉z + |↓〉z

))
=

1

2

(
|↑, ↑〉z + |↑, ↓〉z + |↓, ↑〉z + |↓, ↓〉z

)
and the probability becomes∣∣(

x〈↑, ↑|
)(
α |↑, ↓〉z + β |↓, ↑〉z

)∣∣2 =

∣∣∣∣(1

2

(
z〈↑, ↑|+ z〈↑, ↓|+ z〈↓, ↑|+ z〈↓, ↓|

))(
α |↑, ↓〉z + β |↓, ↑〉z

)∣∣∣∣2
=

∣∣∣∣12(α z〈↑, ↓ | ↑, ↓〉z + β
z
〈↓, ↑ | ↓, ↑〉z

)∣∣∣∣2 =

∣∣∣∣12(α+ β
)∣∣∣∣2

such that the result depends on α and β. The situation is therefore different from a global phase factor.

All possible permutations P̂α applied to a state |ψ〉 ∈ V in a system withN particles where V = V1⊗...⊗VN
gives the set {P̂α |ψ〉}. This set spans Vψ and each of the states in this set describes the same physical
situation if all particles are identical. This is the exchange degeneracy for N identical particles. It gives
rise to a big problem because all these states describe mathematically the same system but when used
for physical predictions using the rules of quantum mechanics result in different answers. The question is
which state describes the physical system. The answer is given by the symmetrization postulate added
to the initial sets of postulates for quantum mechanics.

7.7 The Symmetrization Postulate

There is an infinite number of states that describe a quantum system with multiple identical particles
but depending on the state selected different outcomes of measurement result. This problem consistent
with the rules of quantum mechanics introduced so far is called exchange degeneracy. To overcome this
problem an additional postulate is needed.

Symmetrization Postulate: For a system of identical particles, the only kets of its state space that
can describe physical states are

1. totally symmetric kets with respect to permutations of identical particles or
2. totally antisymmetric kets with respect to permutations of identical particles.

The particles that obey the totally symmetric case are called bosons and the particles that obey the
totally antisymmetric case are called fermions.
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The space state of N distinguishable particles is V = V1 ⊗ ... ⊗ VN but the space state of N identical
particles is either V+ for bosons or V− for fermions. The question is how does one know whether a given
particle is a boson or a fermion. The empirical answer comes from experiments. Particles with integer
spins are bosons and particles with half-integer spins are fermions. Elementary particles such as photons
are bosons but also composite particles such as mesons and helium-4 belong into this group. Elementary
particles such as electrons and muons are fermions but also composite particles such as protons, neutrons
and helium-3 belong into this group. The spin is an intrinsic property for elementary particles and for
non-elementary particles one has to combine the spins of their elementary components. The relation
between spin and the bosonic or fermionic nature of a particle is an empirical fact in elementary quantum
mechanics but there is the spin-statistics theorem in quantum field theory such that this relation can be
derived from other principles.

As shown above {P̂α |ψ〉} span Vψ for |ψ〉 ∈ V and this causes exchange degeneracy. On the other hand
the symmetrization postulate tells that the physically allowed kets live either in V+ for bosons or in
V− for fermions. Thus, one has to show that only one ket in the set {P̂α |ψ〉} lives also in V+ or V−.
The symmetrizer Ŝ+ and the antisymmetrizer Ŝ− both commute with all permutations P̂α such that all
terms are equal to Ŝ+ respectively equal to ηαŜ−. Therefore, symmetrizing |ψ〉 gives Ŝ+ |ψ〉 ∈ V+ and
symmetrizing P̂α |ψ〉 gives also Ŝ+(P̂α |ψ〉) = Ŝ+ |ψ〉 ∈ V+. This shows that the symmetrization postulate
removes the exchange degeneracy. The single state is Ŝ+ |ψ〉 for bosons and Ŝ− |ψ〉 for fermions, and the
remaining question is how this single state is constructed. This is shown for a few examples.

In a two-particle system with |ϕ〉 ∈ V1 and |χ〉 ∈ V2 the state |ψ〉 = |ϕ〉1 ⊗ |χ〉2 = |ϕ〉1 |χ〉2 ∈ V is chosen
in the first step. The second step is the application of the symmetrizer such that the symmetrized state

Ŝ+ |ψ〉 =
1

2

(
P̂12 + P̂21

)(
|ϕ〉1 |χ〉2

)
=

1

2

(
|ϕ〉1 |χ〉2 + |χ〉1 |ϕ〉2

)
is a boson, or the application of the antisymmetrizer such that the antisymmetrized state

Ŝ− |ψ〉 =
1

2

(
P̂12 − P̂21

)(
|ϕ〉1 |χ〉2

)
=

1

2

(
|ϕ〉1 |χ〉2 − |χ〉1 |ϕ〉2

)
is a fermion. The third step is normalization and one has to distinguish |ϕ〉 6= |χ〉 with the normalized
state 1/

√
2
(
|ϕ〉1 |χ〉2±|χ〉1 |ϕ〉2

)
and |ϕ〉 = |χ〉 with 1

2

(
|ϕ〉1 |ϕ〉2 + |ϕ〉1 |ϕ〉2

)
= |ϕ〉1 |ϕ〉2 for bosons. The

case |ϕ〉 = |χ〉 for fermions gives 1
2

(
|ϕ〉1 |ϕ〉2 − |ϕ〉1 |ϕ〉2

)
= 0 and shows therefore that there is no ket in

V− that can describe this physical state. This is the Pauli exclusion principle stating that two identical
fermions cannot be in the same state.

In the three-particle system with |ϕ〉, |χ〉, |ω〉 the state |ψ〉 is select ordered |ψ〉 = |ϕ〉1 |χ〉2 |ω〉3 in the
first step. The symmetrizer for bosons gives

Ŝ+ |ψ〉 =
1

6

(
|ϕ〉1 |χ〉2 |ω〉3 + |ω〉1 |ϕ〉2 |χ〉3 + |χ〉1 |ω〉2 |ϕ〉3 +

|ϕ〉1 |ω〉2 |χ〉3 + |χ〉1 |ϕ〉2 |ω〉3 + |ω〉1 |χ〉2 |ϕ〉3
)

in the second step. In the last step several different cases have to be distinguished. The result in the case
|ϕ〉 6= |χ〉 6= |ω〉 is

|ψ〉 =
1√
6

(
|ϕ〉1 |χ〉2 |ω〉3 + |ω〉1 |ϕ〉2 |χ〉3 + |χ〉1 |ω〉2 |ϕ〉3 + |ϕ〉1 |ω〉2 |χ〉3 + |χ〉1 |ϕ〉2 |ω〉3 + |ω〉1 |χ〉2 |ϕ〉3

)
and is

|ψ〉 =
1√
3

(
|ϕ〉1 |ϕ〉2 |ω〉3 + |ϕ〉1 |ω〉2 |ϕ〉3 + |ω〉1 |ϕ〉2 |ϕ〉3

)
in case |ϕ〉 = |χ〉 6= |ω〉. The state is |ψ〉 = |ϕ〉1 |ϕ〉2 |ϕ〉3 for |ϕ〉 = |χ〉 = |ω〉.

Also in the three-particle system with |ϕ〉, |χ〉, |ω〉 and |ψ〉 = |ϕ〉1 |χ〉2 |ω〉3 the antisymmetrizer for
fermions gives

Ŝ− |ψ〉 =
1

6

(
|ϕ〉1 |χ〉2 |ω〉3 + |ω〉1 |ϕ〉2 |χ〉3 + |χ〉1 |ω〉2 |ϕ〉3
− |ϕ〉1 |ω〉2 |χ〉3 − |χ〉1 |ϕ〉2 |ω〉3 − |ω〉1 |χ〉2 |ϕ〉3

)
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in the second step. State |ψ〉 in the case |ϕ〉 6= |χ〉 6= |ω〉 is

|ψ〉 =
1√
6

(
|ϕ〉1 |χ〉2 |ω〉3 + |ω〉1 |ϕ〉2 |χ〉3 + |χ〉1 |ω〉2 |ϕ〉3 − |ϕ〉1 |ω〉2 |χ〉3 − |χ〉1 |ϕ〉2 |ω〉3 − |ω〉1 |χ〉2 |ϕ〉3

)
and the Pauli exclusion principle does not allow the other cases |ϕ〉 = |χ〉 6= |ω〉 and |ϕ〉 = |χ〉 = |ω〉.

For a system with N particles |ϕ1〉 , ..., |ϕN 〉 the state |ψ〉 = |ϕ1〉1 , ..., |ϕN 〉N is symmetrized or antisym-
metrized by

Ŝ+ |ψ〉 =

(
1

N !

∑
α

P̂α

)
|ϕ1〉1 , ..., |ϕN 〉N Ŝ− |ψ〉 =

(
1

N !

∑
α

ηαP̂α

)
|ϕ1〉1 , ..., |ϕN 〉N

where the left side shows the case for bosons and the right side the case for fermions. When this bosonic
state is represented in the position basis in terms of wave functions this object is sometimes called the
permanent. When this fermionic state is represented in the position basis in terms of wave functions the
signs introduced by ηα obey the same rules as those for the determinant. The corresponding determinants
are called Slater determinants.

7.8 Occupation Number Representation

The occupation number representation provides an alternative compact formulation to describe systems
of identical particles. It is a more natural way of describing identical particles, forms the basis of what is
sometimes called “second quantization”, and is a powerful formalism that allows to study advanced topics
like quantum field theory or quantum statistical mechanics. Labeling particles in a system of identical
particles leads to much redundancy making symmetrizers necessary. Instead of specifying which particles
are in a certain state it is enough to specify how many particles are in this state.

If {|uj〉} is the basis for one particle then {|uj〉1 |uk〉2 ... |up〉N} is the basis for a system of N identical
particles V = V1⊗ ...⊗VN . However, to describe this system a basis for V+ for bosons or V− for fermions
is needed. The basis states in V± are

|ψ〉 ∈ V ⇒ |ψ〉 =
∑
jk...p

cjk...p |uj〉1 |uk〉2 ... |up〉N

Ŝ± |ψ〉 ∈ V± ⇒ Ŝ± |ψ〉 = Ŝ±
∑
jk...p

cjk...p |uj〉1 |uk〉2 ... |up〉N =
∑
jk...p

cjk...p Ŝ± |uj〉1 |uk〉2 ... |up〉N

and this shows that {Ŝ± |uj〉1 |uk〉2 ... |up〉N} is a basis for V±. There is a lot of redundancy in this basis
because V+ and V− are complementary subspaces of V. The repeated states are permutations of each
other, and the basis of V± are equivalence classes of all permutations applied to {|uj〉1 |uk〉2 ... |up〉N}.

Because all P̂α |uj〉1 |uk〉2 ... |up〉N represent the same state in V±, a quantity which is the same in all
permutations is needed to remove the redundancy. Ordering the states as

|u1〉1 |u1〉2 ... |u1〉n1
|u2〉n1+1 ... |u2〉n1+n2

+ ...

such that the individual states are grouped together allows to use the occupation numbers n1 for |u1〉,
n2 for |u2〉 and so on as this quantity. In another permutation of this state |u1〉 still appears n1 times,
|u2〉 appears n2 times and so on. This leads to the occupation number representation

|n1, n2, ...〉 = A± Ŝ± |u1〉1 |u1〉2 ... |u1〉n1
|u2〉n1+1 ... |u2〉n1+n2

+ ...

for N identical particles. Any permutation P̂α of |u1〉1 |u1〉2 ... |u1〉n1
|u2〉n1+1 ... |u2〉n1+n2

+ ... results
in the same occupation numbers where A± is needed for the normalization of states. Note that the
occupation numbers may be zero, and N =

∑
k nk. Note also that in general there is an infinite number

of single particle states |uj〉.

The normalization of the states in the occupation number representation is

|n1, n2, ...〉 =

√
N !

n1!n2!...
Ŝ+ |u1〉1 |u1〉2 ... |u1〉n1

|u2〉n1+1 ... |u2〉n1+n2
+ ...
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for bosons and

|n1, n2, ...〉 =

{√
N ! Ŝ− |u1〉1 |u1〉2 ... |u1〉n1

|u2〉n1+1 ... |u2〉n1+n2
+ ... if all uj are different

0 if two or more uj are equal

for fermions because of the Pauli exclusion principle. For fermions the question is simply whether a state
is occupied or not. Examples of states in the occupation number representation are |0, 5, 3, 0, 8, ...〉 for
bosons and |1, 0, 0, 1, ...〉 for fermions. The order is important because P̂α |ψ−〉 = ηα |ψ−〉 changes the
sign if the permutation is odd. A transposition |uj , uk, ...〉 = − |uk, uj , ...〉 changes the sign.

7.9 Fock Space

So far state spaces for a fixed number of particles have been used. To allow a variable number of particles
the state space is a Fock space which is the space for quantum field theory.

If one works in a specific single-particle basis {|uk〉} a system with N identical particles can be represented
using occupation numbers |n1, n2, ...〉 where n1 particles are in state |u1〉, n2 particles are in state |u2〉 and
therefore nj particles are in state |uj〉 with N =

∑
k nk. In this case, the different occupation numbers

nj and the total number of particles N are well-defined. These states are called Fock states. The Fock
states belong to the totally symmetric V+ for bosons and to the totally antisymmetric V− for fermions.
The space for N identical particles is called FN independent of whether the identical particles are bosons
or fermions. The space F1, for example, consists of a single particle. Also F0 containig zero particles is
defined.

The Fock space F is defined as

F = F0 ⊕F1 ⊕F2 ⊕ ... =

∞⊕
k=0

Fk (7.3)

where VP ⊕ VQ is a vector space VP+Q with dimension P + Q if VP is a vector space of dimension P
and VQ is a vector space of dimension Q and where all linear combinations of |p〉 and |q〉 are in VP+Q

for any |p〉 ∈ VP and any |q〉 ∈ VQ. Thus, the Fock space is the occupation number space for all possible
numbers of particles.

The basis of F is the combination of the bases of all FN . Two kets in a Fock space with a different
number of particles are orthogonal. Because a Fock state has a fixed number of particles any Fock state
belongs to a subspace FN ⊂ F . The vacuum state |0〉 ∈ F0 is the Fock state with zero particles.

The Fock space allows states beyond Fock states such as |0〉 + |1〉 + |1, 1〉 with superpositions of Fock
states with different numbers of particles. This example state is a superposition of the vacuum state, a
single-particle state and a two-particle state where the two particles occupy two different states. This
state has some amplitude of having zero particles, some of having one particle and some of having two
particles. This is an example how Fock spaces allow to treat systems with a variable number of particles,
and this is a feature needed in quantum field theory where particles and antiparticle are created and
annihilated and quantum statistical mechanics where a system can be in an equilibrium with a particle
reservoir with which it exchanges particles.

7.10 Boson Creation and Annihilation Operators

Given a single-particle basis {|uj〉} the Fock state |n1, n2, ..., nj , ...〉 specifies a state with multiple identical
particles with nj particles in state |uj〉. The creation operator â†uj

for bosons acts as

â†uj
|n1, n2, ..., nj , ...〉 =

√
nj + 1 |n1, n2, ..., nj + 1, ...〉 (7.4)

on the Fock state |n1, n2, ..., nj , ...〉. In words, it adds a particle to the state |uj〉. Another way of looking
at the creation operator is that it allows to navigate the Fock space as it leads from FN to FN+1. When
there is no possible confusion one often uses the simplified form â†uj

|nj〉 =
√
nj + 1 |nj + 1〉 instead

8



of (7.4) only showing the occupation number that changes while all the other occupation numbers that
stay the same are omitted.

The adjoint operator of â†uj
is (â†uj

)† = âuj and acts as

〈nj + 1|â†uj
|nj〉 =

√
nj + 1 〈nj + 1|nj + 1〉 =

√
nj + 1

〈nj + 1|â†uj
|nj〉 = 〈nj |(â†uj

)†|nj + 1〉∗ = 〈nj |âuj
|nj + 1〉∗ =

√
nj + 1 6= 0

because Fock states form an orthonormal basis. However, the fact that Fock states form an orthonormal
basis also means that âuj

|nj + 1〉 must be proportional to |nj〉. This means

âuj
|nj + 1〉 =

√
nj + 1 |nj〉 ⇒ âuj

|nj〉 =
√
nj |nj − 1〉

such that this operator navigates from FN to FN−1 as long as N ≥ 1 as it annihilates a particle. The
annihilation operator âuj

for bosons acts as

âuj
|n1, n2, ..., nj , ...〉 =

{√
nj + 1 |n1, n2, ..., nj − 1, ...〉 if nj ≥ 1

0 otherwise
(7.5)

on the Fock state |n1, n2, ..., nj , ...〉. In words, it removes a particle from state |uj〉 if there is at least one.

To determine the commutation relations between creation and annihilation operators the notation is
simplified from â†uj

and âuj
to â†j and âj , respectively, with the implicit understanding that the basis for

single-particle states is always {|uj〉}. From

â†j â
†
k |nj , nk〉 =

√
nj + 1

√
nk + 1 |nj + 1, nk + 1〉 = â†k â

†
j |nj , nk〉

follows that the commutators [â†j , â
†
k] and [â†j , â

†
k]† vanish independent of j 6= k or j = k. Similarly, from

âj â
†
k |nj , nk〉 =

√
nj
√
nk + 1 |nj − 1, nk + 1〉 = â†k âj |nj , nk〉

follows that the commutator [âj , â
†
k] vanishes if j 6= k. However, from

âj â
†
j |nj〉 =

√
nj + 1 âj |nj + 1〉 = (nj + 1) |nj〉 â†j âj |nj〉 =

√
nj â

†
j |nj − 1〉 = nj |nj〉

follows that [âj , â
†
j ] = 1. To summarize, for the bosonic creation and annihilation operators are

[âuj
, âuk

] = 0 [â†uj
, â†uk

] = 0 [âuj
, â†uk

] = δjk (7.6)

the commutation relations.

Given a fixed single-particle state the creation operator â† allows to navigate from the vacuum |0〉 in one
step to |1〉, in another step to |2〉 and so on up the ladder. In the bosonic case one can add arbitrarily
many particles to the same state. The annihilation operator â on the other hand allows to navigate down
the ladder to |2〉, from there in one step to |1〉 and in another step to the vacuum state |0〉. Because there
is no state with less particles than the vacuum state â |0〉 kills the state and this is written as â |0〉 = 0.

Acting with the creation operator on the vacuum state gives â†uj
|0〉 = |1〉,

(
â†uj

)2 |0〉 = â†uj
|1〉 =

√
2 |2〉

and so on. Acting nj times with the creation operator for |uj〉 on the vacuum state gives√
nj ! |nj〉 =

(
â†uj

)nj

|0〉 |nj〉 =
1√
nj !

(
â†uj

)nj

|0〉

and this generalizes to

|n1, n2, ..., nj , ...〉 =
1√

n1!n2!..., nj !...

(
â†u1

)n1
(
â†u2

)n2
...
(
â†uj

)nj

... |0〉

for an arbitrary state |n1, n2, ..., nj , ...〉. Thus, to get the occupation number nj one acts nj times with
â†uj

on the vacuum state |0〉. Comparing this with

|n1, n2, ..., nj , ...〉 =

√
N !

n1!n2!..., nj !...
Ŝ+ |u1〉1 ... |u1〉n1

|u2〉n1+1 ... |u2〉n1+n2
...
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shows the relation

1√
n1!n2!..., nj !...

(
â†u1

)n1
(
â†u2

)n2
...
(
â†uj

)nj

... |0〉

=

√
N !

n1!n2!..., nj !...
Ŝ+ |u1〉1 ... |u1〉n1

|u2〉n1+1 ... |u2〉n1+n2
...

with the expression in terms of the symmetrizer.

The occupation number operator is defined as n̂uj
= â†uj

âuj
and acts as

n̂uj |n1, n2, ..., nj , ...〉 = â†uj
âuj |n1, n2, ..., nj , ...〉 = â†uj

√
nj |n1, n2, ..., nj − 1, ...〉 = nj |n1, n2, ..., nj , ...〉

showing that the Fock states are the eigenstates of the occupation number operator and that the eigen-
values nj tell how many particles are in that state. The operator N̂ counts

N̂ =
∑
j

n̂uj
=
∑
j

â†uj
âuj

the total number of particles.

7.11 Fermion Creation and Annihilation Operators

Given a single-particle basis {|uj〉} the Fock state is written as |uk, u`, ..., up, ...〉 listing only the states
with one particle because there is either no particle or one particle in a state such that the states with
zero particles can be ignored. The creation operator ĉ†uj

for fermions acts as

ĉ†uj
|uk, u`, ..., up, ...〉 = |uj , uk, u`, ..., up, ...〉 ĉ†uj

|uk, u`, ..., uj , ..., up, ...〉 = 0 (7.7)

on the Fock state |uk, u`, ..., up, ...〉. In words, the creation operator creates a particle in the given state if
and only if there is no particle in this state. This follows from the Pauli exclusion principle. The creation
operator allows to navigate from FN to FN+1. Because the order in which the states appear is critical
the new state is added at the beginning of the list.

The adjoint operator of ĉ†uj
is (ĉ†uj

)† and acts as

〈uj , uk, u`, ...|ĉ†uj
|uk, u`, ...〉 = 〈uj , uk, u`, ...|uj , uk, u`, ...〉 = 1

〈uj , uk, u`, ...|ĉ†uj
|uk, u`, ...〉 = 〈uk, u`, ...|(ĉ†uj

)†|uj , uk, u`, ...〉
∗

= 〈uk, u`, ...|ĉuj
|uj , uk, u`, ...〉∗ = 1 6= 0

because Fock states form an orthonormal basis. However, the fact that Fock states form an orthonormal
basis also means |uk, u`, ...〉 = ĉuj |uj , uk, u`, ...〉 such that the operator ĉuj has annihilated the fermion
in state |uj〉. The annihilation operator ĉuj for fermions acts as

ĉuj
|uj , uk, u`, ...〉 = |uk, u`, ...〉 ĉuj

|uk, u`, ...〉 = 0 (7.8)

on the Fock state |uj , uk, u`, ...〉. In words, it removes a particle from state |uj〉 if there is at least one.
The annihilation operator navigates from FN to FN−1 if possible.

The order in the fermionic Fock states is important because exchanging two fermions introduces a minus
sign. The creation operator adds the new state at the beginning of the ordered list, and the annihilation
operator removes a state only when it is at the beginning. If a state after creation is needed in another
position or if the state to be annihilated is not at the beginning, the states have to be moved but keeping
track of the sign changes. Every exchange of two states multiplies with −1. If for example |u2〉 should
be annihilated in |u1, u2〉 then ĉu2

|u1, u2〉 = −ĉu2
|u2, u1〉 = − |u1〉.

The fermionic creation and annihilation operator obey anticommutation relations. To simplify notation
ĉ†j and ĉj are used instead of ĉ†uj

and ĉuj assuming implicitly the basis {|uj〉}. Starting with the creation
operators j 6= k and nj = nk = 0 gives

ĉ†j ĉ
†
k |u`, ...〉 = ĉ†j |uk, u`, ...〉 = |uj , uk, u`, ...〉

ĉ†k ĉ
†
j |u`, ...〉 = ĉ†k |uj , u`, ...〉 = |uk, uj , u`, ...〉 = − |uj , uk, u`, ...〉

}
⇒ {ĉ†j , ĉ

†
k} = 0
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and this is also the case for j = k because (ĉ†j)
2 = 0 due to the Pauli exclusion principle. A similar

calculation shows {ĉj , ĉk} = 0. For ĉj and ĉ†k with nj = 1 and nk = 0 the anticommutator is

ĉj ĉ
†
k |uj , u`, ...〉 = ĉj |uk, uj , u`, ...〉 = −ĉj |uj , uk, u`, ...〉 = − |uk, u`, ...〉

ĉ†k ĉj |uj , u`, ...〉 = ĉ†k |u`, ...〉 = |uk, u`, ...〉

}
⇒ {ĉj , ĉ†k} = 0

in the case j 6= k but the anticommutator is

ĉj ĉ
†
j |u`, ...〉 = ĉj |uj , u`, ...〉 = |u`, ...〉

ĉ†j ĉj |u`, ...〉 = 0

}
for nj = 0

ĉj ĉ
†
j |uj , u`, ...〉 = 0

ĉ†j ĉj |uj , u`, ...〉 = ĉ†j |u`, ...〉 = |uj , u`, ...〉

}
for nj = 1


⇒ {ĉj , ĉ†j} = 1

in the case j = k. To summarize, for the fermionic creation and annihilation operators are

{ĉuj
, ĉuk
} = 0 {ĉ†uj

, ĉ†uk
} = 0 {ĉuj

, ĉ†uk
} = δjk (7.9)

the anticommutation relations.

Acting with the creation operator when the state is already occupied gives zero, and acting with the
annihilation operator on a state where there is nothing to annihilate gives also zero. This means

ĉ†uj
|uj〉 = 0 ĉuj

|0〉 = 0

and there is no ladder as in the bosonic case because of the Pauli exclusion principle. In general

|n1, n2, ..., nj , ...〉 =
(
ĉ†u1

)n1
(
ĉ†u2

)n2
...
(
ĉ†uj

)nj
... |0〉 nk ∈ {0, 1}

for an arbitrary state |n1, n2, ..., nj , ...〉. Comparing this with

|n1, n2, ..., nj , ...〉 =
√
N ! Ŝ− |u1〉1 ... |u1〉n1

|u2〉n1+1 ... |u2〉n1+n2
...

shows the relation(
ĉ†u1

)n1
(
ĉ†u2

)n2
...
(
ĉ†uj

)nj
... |0〉 =

√
N ! Ŝ− |u1〉1 ... |u1〉n1

|u2〉n1+1 ... |u2〉n1+n2
...

with the expression in terms of the antisymmetrizer.

The occupation number operator is defined as n̂uj
= ĉ†uj

ĉuj
and acts as

n̂uj |uk, ...〉 = ĉ†uj
ĉuj |uk, ...〉 = 0 nj = 0

n̂uj
|uj , uk, ...〉 = ĉ†uj

ĉuj
|uj , uk, ...〉 = ĉ†uj

|uk, ...〉 = |uj , uk, ...〉 nj = 1

}
⇒ n̂uj |uk, ...〉 = nj |uk, ...〉

showing that the Fock states are the eigenstates of the occupation number operator and that the eigen-
values nj tell how many particles are in that state. Note that this is also true if |uj〉 is not the first in
the list because moving it there in p steps and back again in p steps multiplies the result by (−1)2p = 1.
The operator N̂ counts

N̂ =
∑
j

n̂uj
=
∑
j

ĉ†uj
ĉuj

the total number of particles.

To summarize, the commutation and anticommutation relations, respectively, for creation operators and
annihilation operators are

[âuj
, âuk

] = 0 {ĉuj
, ĉuk
} = 0

[â†uj
, â†uk

] = 0 {ĉ†uj
, ĉ†uk
} = 0

[âuj , â
†
uk

] = δjk {ĉuj , ĉ
†
uk
} = δjk

on the left side for bosons and on the right side for fermions.
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7.12 One-Body Operators

The simplest case of operators are the one-body operators acting on one particle at a time. Examples
are the position and the momentum operators. An operator f̂ acting on a single particle in Vq can be

written as I1 ⊗ I2 ⊗ ... ⊗ f̂q ⊗ ... ⊗ IN acting on the full state space V = V1 ⊗ V2 ⊗ ... ⊗ Vq ⊗ ... ⊗ VN .

This is simplified to f̂q by omitting all the Ij . If the N particles are identical then V = V+ for bosons

and V = V− for fermions, and the operator f̂ must by symmetric under particle exchange. In this case

F̂ =

N∑
q=1

f̂q

is symmetric and is called a one-body operator. One needs the matrix elements for a given basis and
this matrix elements can be written as 〈state|F̂ |state〉. However, this expression can become very tedious
because creating totally symmetric states by applying the symmetrizer or antisymmetrizer to the tensor
product state results in N ! terms. With N ! terms from the bra, N terms from the sum over f̂q and N !
terms from the ket this means N(N !)2 and makes the calculations very cumbersome.

Using creation and annihilation operators allows a much more compact representation for a one-body
operator acting on identical particles. In the basis {|uj〉} for Vq one can write

f̂ =
∑
jk

fjk |uj〉〈uk| fjk = 〈uj |f̂ |uk〉 ⇒ f̂q =
∑
jk

fjk |uj〉q q〈uk| fjk = q〈uj |f̂ |uk〉q

and insert into

F̂ =

N∑
q=1

f̂q =

N∑
q=1

∑
jk

fjk |uj〉q q〈uk| =
∑
jk

fjk

N∑
q=1

|uj〉q q〈uk| =


∑
jk

fjk â
†
uj
âuk

for bosons∑
jk

fjk ĉ
†
uj
ĉuk

for fermions
(7.10)

to get the symmetrized operator where the last step with the creation and annihilation operators needs
a proof. The operator â†uj

âuk
respectively ĉ†uj

ĉuk
moves a particle from state |uk〉 to state |uj〉.

The proof determines how F̂ acts on a Fock state

|nr, ns, ...〉 =

√
N !

nr!ns!...
Ŝ± |ur〉1 ... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
...

where only

N∑
q=1

|uj〉q q〈uk|
√

N !

nr!ns!...
Ŝ± |ur〉1 ... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
...

is needed with nj = 0, 1, 2, 3, ... for bosons and nj = 0, 1 for fermions. The operator is symmetric, and

[Ôs, P̂α] = 0 for any symmetric operator Ôs and any permutation P̂α such that also [Ôs, Ŝ±] = 0. The
operators can therefore be exchanged√

N !

nr!ns!...
Ŝ±

(
N∑
q=1

|uj〉q q〈uk|

)
|ur〉1 ... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
...

and the sum from 1 to N becomes(
N∑
q=1

|uj〉q q〈uk|

)
|ur〉1 |ur〉2 ... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
...

=
(
|uj〉1 1〈uk|ur〉1

)
|ur〉2 ... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
...

+ |uj〉1
(
|uj〉2 2〈uk|ur〉2

)
... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
...+ ...

=
(
|uj〉1 δkr

)
|ur〉2 ... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
...

+ |uj〉1
(
|uj〉2 δkr

)
... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
...+ ...
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showing that only a total of nk terms will be non-zero. The nk terms |uk〉 are transformed into |uj〉 and
all these nk terms are permutations of each other. Thus, the whole expression simplifies to(

N∑
q=1

|uj〉q q〈uk|

)√
N !

nr!ns!...
Ŝ± |ur〉1 ... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
... |uk〉q ...

= nk

√
N !

nr!ns!...
Ŝ± |ur〉1 ... |ur〉nr

|us〉nr+1 ... |us〉nr+ns
... |uj〉q ...

showing the action of F̂ on a Fock state. The operator F̂ picks a particle in state |uk〉 and replaces it by
a particle in state |uj〉. Thus, F̂ acting on a Fock state |nr, ns, ...〉 gives another Fock state |n′r, n′s, ...〉
both in occupation number representation where n′k = nk − 1 and n′j = nj + 1. It follows

|n′r, n′s, ...〉 =

√
N !

n′r!n
′
s!...

Ŝ± |ur〉1 ... ⇒ Ŝ± |ur〉1 ... =

√
n′r!n

′
s!...

N !
|n′r, n′s, ...〉

and (
N∑
q=1

|uj〉q q〈uk|

)
|nr, ns, ..., nk, ..., nj , ...〉 = nk

√
N !

nr!ns!...

√
n′r!n

′
s!...

N !
|n′r, n′s, ...〉

= nk

√
nj + 1

nk
|n′r, n′s, ...〉 =

√
nk(nj + 1) |nr, ns, ..., nk − 1, ..., nj + 1, ...〉

making clear that this is equal to

â†j âk |nr, ns, ..., nk, ..., nj , ...〉 =
√
nk
√
nj + 1 |nr, ns, ..., nk − 1, ..., nj + 1, ...〉

for the bosonic creation and annihilation operators and analogously for the fermionic case.

The term fjk â
†
uj
âuk

moves one particle from state |uk〉 to state |uj〉, and fjk is the amplitude associated
with this transition. In the basis of its own eigenstates one gets

f̂ |vn〉 = fn |vn〉 ⇒ fjk = 〈vj |f̂ |vk〉 = fk 〈vj |vk〉 = fk δjk

⇒ F̂ =
∑
jk

fjkâ
†
vj âvk =

∑
jk

fk δjkâ
†
vj âvk =

∑
j

fj â
†
vj âvj =

∑
j

fj n̂vj

such that the one-body operator F̂ in the basis of eigenstates simply counts how many particles there are
and multiplies this number for each particle by the eigenvalue corresponding to the single-particle state
occupied by this particle.

7.13 Two-Body Operators

Also two-body operators can be written in terms of the creation and annihilation operators. An important
example is the Coulomb interaction. The state space of two particles is Vq ⊗ Vq′ and the operator ĝqq′

acts on this two-particle state space. The space state for N particles is V = V1 ⊗ ...⊗Vq ⊗Vq′ ⊗ ...⊗VN
and the operator is I1 ⊗ ... ⊗ ĝqq′ ⊗ ... ⊗ IN but is simply written as ĝqq′ . For N identical particles the
state space has to take symmetrization into account and the operator acting on all N particles becomes

Ĝ =
1

2

N∑
q,q′=1
q 6=q′

ĝqq′

because it must be symmetric under particle exchange. Such an operator is called a two-body operator
and it is very cumbersome when written in terms of all possible permutations.

Instead of working with symmetrized and antisymmetrized tensor products one can build for the two-
body operator on the results obtained for the one-body operator. The commutation relations for bosons
and the anticommutation relations for fermions are

[âj , â
†
k] = δjk {ĉj , ĉ†k} = δjk
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according to (7.6) and (7.9), respectively. Under the assumption that one is always working in the same
basis, âj has been written instead of âuj

and similarly for the other operators.

The results in the following are applicable for bosons and fermions but are only developed for bosons,
and the commutation and anticommutation relations can be written as

âj â
†
k = η â†kâj + δjk

âj âk = η âkâj

}
with η =

{
+1 for bosons

−1 for fermions

such that

â†j âkâ
†
` âm = â†j

(
η â†` âk + δk`

)
âm = η â†j â

†
` âkâm + δk` â

†
j âm = η â†j â

†
` (âkâm) + δk` â

†
j âm

= η â†j â
†
` (η âmâk) + δk` â

†
j âm = η2 â†j â

†
` âmâk + δk` â

†
j âm = â†j â

†
` âmâk + δk` â

†
j âm

is as a sample formula used below which is independent of whether the particles are bosons or fermions
because the factors η cancel.

A special case is ĝqq′ = f̂q ĥq′ such that Ĝ becomes

Ĝ =
1

2

N∑
q,q′=1
q 6=q′

ĝqq′ =
1

2

 N∑
q=1

f̂q

N∑
q′=1

ĥq′ −
N∑
q=1

f̂q ĥq

 =
1

2

 N∑
q=1

f̂q

N∑
q′=1

ĥq′ −
N∑
q=1

(
f̂ ĥ
)
q


where f̂q ĥq acts on the same state and can be written as

(
f̂ ĥ
)
q
. Interpreting

(
f̂ ĥ
)
q

as another operator

shows that each of the sums are one-body operators such that they can be written in terms of creation
and annihilation operators

Ĝ =
1

2

∑
j`

fj` â
†
j â`
∑
km

hkm â
†
kâm −

∑
jm

(
f̂ ĥ
)
jm
â†j âm


=

1

2

∑
jk`m

fj` hkm â
†
j â` â

†
kâm −

∑
jm

(
f̂ ĥ
)
jm
â†j âm


=

1

2

∑
jk`m

fj` hkm â
†
j â
†
kâmâ` +

∑
jk`m

fj` hkm δj`â
†
j âm −

∑
jm

(
f̂ ĥ
)
jm
â†j âm


according to (7.10) and using the above sample formula with η to distinguish bosons and fermions. The
second term is

∑
jk`m

fj` hkm δj`â
†
j âm =

∑
j`m

〈uj |f̂ |u`〉 〈u`|ĥ|um〉 â†j âm =
∑
jm

〈uj | f̂

(∑
`

|u`〉〈u`|

)
ĥ |um〉 â†j âm

=
∑
jm

〈uj | f̂ ĥ |um〉 â†j âm =
∑
jm

〈uj | f̂ ĥ |um〉 â†j âm =
∑
jm

(
f̂ ĥ
)
jm
â†j âm

and cancels with the third term such that

Ĝ =
1

2

N∑
q,q′=1
q 6=q′

ĝqq′ =
1

2

∑
jk`m

fj` hkm â
†
j â
†
kâmâ` ĝqq′ = f̂q ĥq′

is the two-body operator for the case where ĝqq′ can be factorized as f̂q ĥq′ into two one-particle operators.

In the general case the two-body operator ĝqq′ can always be written as

ĝqq′ =
∑
αβ

cαβ f̂
α
q ĥ

β
q′
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where ĝqq′ = f̂q ĥq′ is the special case with all expansion coefficients cαβ being zero except for one of
them. The example (x̂1 − x̂2)2 = x̂21 + x̂22 − x̂1x̂2 − x̂2x̂1 illustrates how this can be done. Thus,

Ĝ =
1

2

N∑
q,q′=1
q 6=q′

ĝqq′ =
1

2

N∑
q,q′=1
q 6=q′

∑
αβ

cαβ f̂
α
q ĥ

β
q′ =

1

2

∑
αβ

cαβ

N∑
q,q′=1
q 6=q′

f̂αq ĥ
β
q′

=
1

2

∑
αβ

cαβ
∑
jk`m

〈uj |f̂αq |u`〉 〈uk|ĥ
β
q′ |um〉 â

†
j â
†
kâmâ`

using the result for the factorized case. Because

gjk`m = q〈uj | q′ 〈uk|ĝqq′ |u`〉 |um〉q′ =
∑
αβ

cαβ 〈uj |f̂αq |u`〉 〈uk|ĥ
β
q′ |um〉

the result becomes

Ĝ =
1

2

N∑
q,q′=1
q 6=q′

ĝqq′ =
1

2

∑
jk`m

gjk`m â
†
j â
†
kâmâ` (7.11)

with gjk`m = q〈uj | q′ 〈uk|ĝqq′ |u`〉 |um〉q′ for the general case. This formula is applicable for bosons and
fermions. Conceptually, this means that there are initially two particles in states u` and um and finally
two particles in states uj and uk where gjk`m is the transition amplitude.

Note that the order of the indices is important. In gjk`m the last two indices are `m but the order of the
annihilation operators is âmâ`. This order is not relevant for bosons with their commutation relations
but is important for fermions with their anticommutation relations.

7.14 Changing Basis of Creation and Annihilation Operators

Choosing a good basis can simplify the mathematics of a problem significantly. This is also the case with
creation and annihilation operators. Since states and operators can be written in terms of creation and
annihilation operators the question is how they transform under a base change. The single-particle basis
is {|uj〉} with orthonormality 〈uj |uk〉 = δjk.

The boson creation operator (7.4) and the boson annihilation operator (7.5) act as

â†uj
|nj〉 =

√
nj + 1 |nj + 1〉 âuj

|nj〉 =
√
nj |nj − 1〉

where only the changing occupation number has been listed showing that nj particles are initially in state
|uj〉. The fermion creation operator (7.7) and the fermion annihilation operator (7.8) act as

ĉ†uj
|un, ...〉 = |uj , un, ...〉 ĉuj

|uj , un, ...〉 = |un, ...〉

in a similar fashion but written using kets from the basis due to the Pauli exclusion principle because
occupation numbers can only be 0 or 1. These operators become â†vk and so on in another basis {|vj〉}
with orthonormality 〈vj |vk〉 = δjk.

To see how creation and annihilation operators change from basis {|uj〉} to basis {|vj〉} one can start
from the action of the creation operator on the vacuum

â†vk |0〉 = |vk〉 = I |vk〉 =

∑
j

|uj〉〈uj |

 |vk〉 =
∑
j

〈uj |vk〉 |uj〉 =
∑
j

〈uj |vk〉 â†uj
|0〉

and apply it to the annihilation operator

âvk =
(
â†vk
)†

=

∑
j

〈uj |vk〉 â†uj

† =
∑
j

〈uj |vk〉∗
(
â†uj

)†
=
∑
j

〈vk|uj〉 âuj
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using 〈uj |vk〉† = 〈uj |vk〉∗ = 〈vk|uj〉. The result for fermionic operators is the same. Thus, the creation
and annihilation operators change as

â†vk =
∑
j

〈uj |vk〉 â†uj
âvk =

∑
j

〈vk|uj〉 âuj
(7.12)

for bosons and fermions when going from the basis {|uj〉} to the basis {|vj〉}.

As a sanity check one can examine how the commutation relations (7.6) and the anticommutation rela-
tions (7.9) behave under a basis change. The commutation relation are

[âvk , â
†
vm ] =

∑
j

〈vk|uj〉 âuj ,
∑
`

〈u`|vm〉 â†u`

 =
∑
j`

〈vk|uj〉 〈u`|vm〉 [âuj , â
†
u`

] =
∑
j`

〈vk|uj〉 〈u`|vm〉 δj`

=
∑
`

〈vk|u`〉 〈u`|vm〉 = 〈vk|

(∑
`

|u`〉〈u`|

)
|vm〉 = 〈vk| I |vm〉 = 〈vk|vm〉 = δkm

in the new basis, and similar calculations for the other three operators show the same.

A last check determines how the particle number operator N̂ transforms under a basis change. It is in
the new basis

N̂ =
∑
k

n̂vk =
∑
k

â†vk âvk =
∑
k

∑
j

〈uj |vk〉 â†uj

(∑
`

〈vk|u`〉 âu`

)
=
∑
kj`

〈uj |vk〉 〈vk|u`〉 â†uj
âu`

=
∑
j`

〈uj |

(∑
k

|vk〉〈vk|

)
|u`〉 â†uj

âu`
=
∑
j`

〈uj |u`〉 â†uj
âu`

=
∑
j`

δj` â
†
uj
âu`

=
∑
j

â†uj
âuj =

∑
j

n̂uj

and transforms therefore as expected. The number of particles is conserved under the change of the basis
as it is required by physics.
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