
REXX/IUCV PACKAGE

REXXIUCV:

VM REXX PROGRAMMING SUPPORT FOR IUCV

SHARE 75 (NEW ORLEANS, LOUISIANA)

SESSION O739

August, 1990

Rainer F. Hauser

IBM Research Division
Zurich Research Laboratory

Säumerstrasse 4
CH - 8803 Rüschlikon

Switzerland

BITNET/EARN/VNET: RFH@ZURLVM1
INTERNET: rfh@ibm.com

Abstract

REXXIUCV allows the use of the VM/SP or VM/XA SP Inter-User Communications Vehicle (IUCV)
with the Restructured Extended Executor (REXX) language under CMS. In the first part, communications
in general and IUCV in particular are shortly introduced. The second part presents the design, imple-
mentation, and use of REXXIUCV. Finally, possible and real applications are discussed to demonstrate
its use.

Abstract ii

Introduction

REXXIUCV (or also called REXX/IUCV or RXIUCVFN) allows the use of IUCV (Inter-User Commu-
nications Vehicle) with the REXX language under CMS. Application Systems which involve multiple
virtual machines can now be implemented entirely in REXX. The same holds for applications which ac-
cess services provided by subsystems in other virtual machines or functions offered by CP via IUCV. All
of the advantages of using REXX can be exploited for prototyping, realizing, and testing applications
without the need of low-level interface programming. REXXIUCV supports multiple communication paths
in parallel and offers flexible handling of events, including IUCV and timer interrupts.

Before we describe REXXIUCV in detail, we introduce shortly some basic communications concepts and
terminology needed to understand IUCV as depicted in Figure 1.

 +------------------------------+ +------------------------------+

 |VM | |VM |

 | | A | | |

| +----------|----|----------+ | | |

 | |REXXIUCV +----+ | | | |

 | | | | | |

 | | | A | | | | A |

 +-+----------|----|----------+-+ +------------|----|------------+

 +------------|----|-----------------------------|----|------------+

 |CP V | -------------+ V | |

 | |||| |

 | -------------+ |

 | +------------- |

 | |||||| |

 | +------------- |

 +---+

Figure 1. IUCV as a Communication Service

IUCV is a communication medium available to virtual machines to communicate among themselves and
with certain CP facilities. The communication service offered by IUCV can be modeled as a set of mes-
sage queues through which users can exchange data.

IUCV being a connection-oriented service requires that two virtual machines must first establish a con-
nection (i.e. an IUCV path) between them, before they can actually communicate, and eventually will
close the connection after termination of the data exchange. Accordingly, these three distinct phases are
called connection establishment phase, data phase, and termination phase.

The IUCV service is available to its users through interaction across the service interface, i.e. across the
boundary between CP and each virtual machine. This interaction, seen from a virtual machine, is described
in “VM/SP: System Facilities for Programming” (SC24-5288) and “VM/XA SP: CP Programming Ser-
vices” (SC23-0370) in terms of the IUCV machine instruction, the IUCV interrupt, and the many associ-
ated parameters with their formats. Seen as service primitives, these interactions include commands to
initialize and terminate IUCV use (DCLBFR, RTRVBFR), to establish and close IUCV paths (CON-
NECT, ACCEPT, SEVER), and to to exchange message data (SEND, RECEIVE, REPLY).

In contrast to this assembler-level interface to IUCV, REXXIUCV offers the full IUCV service to REXX
programs in terms of the REXX language. That is, IUCV is used through a single REXX function, where
parameters and results are easy-to-parse data strings.

Introduction 1

Description of REXXIUCV

REXXIUCV provides a REXX interface to IUCV or CMS IUCV in addition to the assembler interface
available through VM/SP and VM/XA SP. When loaded, it offers a built-in function called IUCV in
REXX which allows access to the complete IUCV facility.

RXIUCVFN Function Syntax

When the module RXIUCVFN is loaded, the built-in function IUCV can be issued through the REXX
function call

var = IUCV(function, arg1, arg2, ..., argn)

in a REXX program, where function is a function keyword (service primitive) such as CONNECT, and
the argi are function-dependent further arguments.

There are two functions manipulating the IUCV environment. The keyword INIT activates IUCV either
with DCLBFR or through the the CMS IUCV interface depending on the other arguments. The keyword
TERM deactivates IUCV after termination of all IUCV paths created using REXXIUCV. The functions
CONNECT, ACCEPT, SEVER, QUIESCE, and RESUME manipulate IUCV paths. They correspond to
the IUCV functions with the same name. Similarly, the functions SEND, PURGE, RECEIVE, REJECT,
and REPLY handle IUCV messages. In addition, the two function keywords QUERY and WAIT allow
determination of the status and waiting for events (interrupts), respectively.

Example

To demonstrate the use of REXXIUCV, we present two simple REXX programs. They are to be executed
in two different virtual machines on the same VM system. One program (RCVSAMPL EXEC) — to be
started first — reacts passively to connection requests from the other program (SNDSAMPL EXEC). In
order to keep them as small as possible, both programs do not contain the code normally used for various
checks and corresponding error messages. In other words, they are neither robust nor user-friendly.

After some initialization, the program RCVSAMPL will wait for IUCV interrupts and process them. When
an IUCV path gets severed, it displays the number of messages received on this path. RCVSAMPL is
given as follows:

/* Initialize REXX/IUCV */

address command 'CP SET TIMER REAL' /* Note 1 */

address command 'RXIUCVFN LOAD' /* Note 2 */

if rc¬=0 then exit rc

Temp = IUCV('INIT',2000,'Appl','EXAMPLE ') /* Note 2 */

if rc¬=0 then exit 100+rc

/* Process IUCV Interrupts */

do forever /* Note 5 */

Temp = IUCV('WAIT',900,'NOWAIT') /* Note 4 */

QueryNextInterrupt = IUCV('QUERY','NEXT') /* Note 4 */

parse var QueryNextInterrupt Pending Type PathId . TrgCls .

 select

when Type=1 then do /* Pending Connection - Note 7 */

Temp = IUCV('ACCEPT',PathId,255,'No',left('OK',16)) /* Note 7 */

Count.PathId = 0

 end

when Type=3 then do /* Path Severed - Note 9 */

Temp = IUCV('SEVER',PathId,left('End',16)) /* Note 9 */

say Count.PathId 'messages received on path' PathId

Description of REXXIUCV 2

 end

when Type=9 then do /* Pending Message - Note 8 */

Message = IUCV('RECEIVE',PathId,TrgCls) /* Note 8 */

if rc=0 then Count.PathId = Count.PathId + 1

 end

 otherwise nop

 end

end

/* Terminate REXX/IUCV */

Temp = IUCV('TERM') /* Note 10 */

address command 'NUCXDROP RXIUCVFN' /* Note 10 */

After the necessary initialization, the program SNDSAMPL actively connects to the virtual machine run-
ning RCVSAMPL EXEC. When the IUCV path is successfully established, it starts sending messages.
SNDSAMPL looks as follows:

/* Initialize REXX/IUCV */

address command 'CP SET TIMER REAL' /* Note 1 */

address command 'RXIUCVFN LOAD' /* Note 2 */

if rc¬=0 then exit rc

NumPath = IUCV('INIT',1,'Appl','Temp'||right(random(0,9999),4,'0')) /* Note 2 */

if rc¬=0 then exit 100+rc

/* Connect to RCVSAMPL EXEC */

parse arg VmId Count Message /* Note 3 */

Temp = IUCV('CONNECT',VmId,255,'Noprio','EXAMPLE ') /* Note 6 */

if rc=0 then Error = 0

else Error = 1

parse var Temp . MsgLim .

/* Process IUCV Interrupts */

do while(¬Error) /* Note 5 */

Temp = IUCV('WAIT',900,'NOWAIT') /* Note 4 */

Temp = IUCV('QUERY','NEXT') /* Note 4 */

parse var Temp Pending Type PathId Others

 select

when Type=2 then do /* Connection Complete - Note 7 */

 Sent = 0

 Received = 0

rc = SENDIT(PathId,Message) /* Note 8 */

if rc¬=0 then Error = 1

 end

when Type=7 then do /* Nonprio Msg Complete - Note 8 */

Received = Received + 1

rc = SENDIT(PathId,Message) /* Note 8 */

if rc¬=0 then Error = 1

 end

 otherwise nop

 end

if Sent=Received & Sent=Count then do

Temp = IUCV('SEVER',PathId,left('End',16)) /* Note 8 */

 leave /* Note 8 */

 end

end

/* Terminate REXX/IUCV */

Temp = IUCV('TERM') /* Note 10 */

address command 'NUCXDROP RXIUCVFN' /* Note 10 */

exit Error

Description of REXXIUCV 3

/* Send Procedure - Note 8 */

SENDIT: procedure expose MsgLim Count Sent Received

 PathId = arg(1)

Message = arg(2)

rc = 0

do while(rc=0 & Sent-Received<MsgLim & Sent<Count)

Temp = IUCV('SEND',PathId,Message,0,0,'No','No','No') /* Note 8 */

Sent = Sent + 1

 end

return rc

Notes:

1. On VM/SP systems, the virtual machine should set the timer to real for the WAIT function to work
properly. Otherwise, no timer interrupts get generated, and the program may wait for-ever. (A more
sophisticated program would set this parameter back to what it was before the program was called.)

2. In an initialization phase, REXXIUCV must be loaded before the IUCV function can be called, and
the IUCV facility must be initialized before a path can be established. Since both programs initialize
IUCV for CMS IUCV (argument 'Appl'), a name is needed. (One program uses the name 'EXAM-
PLE ', and the other builds a random name not to be known externally.)

3. The RCVSAMPL program is called without arguments. When calling the SNDSAMPL program, the
userid (variable VmId) of the partner virtual machine, the number of messages to be sent (variable
Count), and the message itself (variable Message) must be given. (Note that you have to enter VmId

in uppercase.)
4. The function keywords WAIT and QUERY together provide the means to wait and react to IUCV

events. When an IUCV interrupt occurs, an interrupt buffer (kept inside REXXIUCV) describes the
event. This further information is accessible using the QUERY function.

5. The functions WAIT and QUERY are called in a loop until some exit conditions are met. (The pro-
gram RCVSAMPL actually never ends.)

6. Before the SNDSAMPL program enters the loop, it requests a connection to the virtual machine
running the RCVSAMPL program. (The VmId of this virtual machine was entered when calling
SNDSAMPL.) It must specify the same name (here 'EXAMPLE ') as RCVSAMPL used when ini-
tializing.

7. The virtual machine running RCVSAMPL gets an IUCV interrupt indicating a pending connection
and accepts it. Accepting the path results in a connection complete type IUCV interrupt in the virtual
machine running SNDSAMPL. Now, the path is established.

8. In a subroutine, the SNDSAMPL program sends as many messages as allowed by IUCV (REXX
variable MsgLim) or as requested by the user (REXX variable Count). RCVSAMPL receives these
messages, and SNDSAMPL can send more messages. When as many messages as requested by the
user have been sent and received, the SNDSAMPL program disconnects (severs) the path.

9. Also the RCVSAMPL program severs the path to complete the disconnect phase. (Note that the
RCVSAMPL program can have established several paths to different virtual machines running
SNDSAMPL at the same time.)

10. In a termination phase, IUCV and REXXIUCV are cleaned up and deactivated. (If the function
TERM is not called explicitly, dropping REXXIUCV from the nucleus would call it implicitly.)

Design Principles

There are two fundamental differences between the /370 Assembler and REXX. First, the assembler lan-
guage represents data as an address and a length of a piece of memory, but REXX uses variables and their
values for this purpose. Second, events in an assembler program are handled by an asynchronous interrupt
handler while REXX only knows synchronous function calls. These two differences and the following
principles guided the design of REXXIUCV:

1. The status of REXXIUCV with all established paths, pending messages, and interrupt buffers should
not be destroyed when the REXX program terminates without cleaning up properly. (For testing, it
is very useful if one program can terminate and another can determine the status and continue where
the former program stopped.)

Description of REXXIUCV 4

2. REXXIUCV should provide access to the full IUCV facility, and not only to a limited subset. (The
function not provided is usually the one you would need.)

3. There should be a one-to-one mapping between REXXIUCV function keywords and IUCV functions.
(Combined higher order functions such as for a complete connection establishment phase can easily
be written in REXX if needed.)

4. The information contained in the IUCV interrupt buffer describing an IUCV interrupt should be
available to the REXX program, but in a representation appropriate for REXX parsing.

5. REXXIUCV should allow for high scheduling flexibility in processing pending events. (A REXX
program may only process events from one path and leaving the interrupts from other paths unser-
viced.)

6. Because the original return code from IUCV bears important information, it should be available to
the REXX program. (These return codes plus some REXXIUCV specific return codes are passed to
the program in the REXX variable RC.)

7. Limits such as the maximum number of IUCV paths supported by REXXIUCV are necessary, but
should be easy to change from one version to another.

Description of REXXIUCV 5

Applications

Instead of describing what REXXIUCV could be used for, we describe where we actually used it in our
own projects. We designed, built and used REXXIUCV to support the implementation of an OSI transport
service for VM systems and workstations. The service allowed communication between virtual machines
and LAN-attached workstations. The VM side of it was accessible from the user's virtual machine via
IUCV.

Testing and Experimenting

Initially, we designed REXXIUCV as a testing tool for this IUCV path to the OSI transport service. The
power of REXX allowed building any character string and sending it to the service under test. We gen-
erated systematically many protocol test cases in the client's virtual machine and observed the behavior
of the service. This simple and thorough testing made the service very robust. (The performance of
REXX and REXXIUCV allowed even stress testing.)

Later in the project, we started using an experimental IUCV line-driver of RSCS. Since we could not get
any documentation for it except the running program, we started exploring its behavior experimentally.
Besides the fact that we learned all essential detail about it, we also found several errors which we reported
to the developers.

Rapid Prototyping

In a very natural way, we derived some complete client programs for the OSI transport service from the
programs we used for testing. More and more phases of the protocol became completely tested, and the
test programs worked through these phases the same way a client program would do.

We actually intended to replace the early REXX prototype of the client program by a compiled version
in another programming language, but we never started this work since there was no need for it. The
difference in speed between a compiled and an interpreted language did not cause any serious degradation
of the service because the time-consuming part was in the server program which was already implemented
in a compiled language, rather than in the REXX client part.

Final Application Programs

As one set of final applications, we used REXXIUCV to connect to the CP service '*MSG' in order to
get access to RSCS messages, messages from batch machines or other similar service machines. Such
programs can be written even by casual programmers without much difficulties since they are simple and
small.

We also realized very large REXX programs using REXXIUCV. Connecting to the above mentioned
IUCV line-driver in RSCS, we built a complete, full-function RSCS node which provided access to the
RSCS network from LAN-attached workstations. Besides a few assembler routines to invoke certain CMS
features, all software of this RSCS node was written in REXX. (This program was part of the setup to
demonstrate an X.400 mail service at the TELECOM'87 exhibition in Geneva, Switzerland, October 20-27,
1987, in connection with the IBM X.400 PROFS Connection.)

When already REXX as an interpreted language allowed programmers development of large applications
mainly or completely in REXX, the availability of the REXX compiler encouraged even more develop-
ment of large applications directly in REXX. Needless to say, programs using REXXIUCV can be com-
piled the same way as programs without using it.

Applications 6

Conclusions

REXXIUCV is a system dependent REXX extension which runs on CMS under VM/SP or VM/XA SP
and allows inter-VM communication in REXX. It provides access from a high-level language to the
complete IUCV facility. It is an easy-to-use interface to IUCV and a flexible tool for IUCV programming.

REXXIUCV is available as a licensed program of IBM from the Europe/Middle East/Africa Group since
March 1989 under the name “VM REXX Programming Support for IUCV” and with the program number
5785-LAT. As stated in the Availability Notice, GB11-8432-0: “General availability from the Asia/Pacific
Group and the Americas Group program libraries is planned to be one month later.” In addition to the
licensed program (including sample REXX programs), a Program Description and Operations Manual,
SB11-8433, is provided as unlicensed documentation.

Conclusions 7

