RZ 3624 (# 99634) 08/08/2005
Computer Science 17 pages

Research Report

Transforming Unstructured Cycles to Structured Cycles in
Sequential Flow Graphs

R.F. Hauser

IBM Research GmbH
Zurich Research Laboratory
8803 Riischlikon
Switzerland

E-mail: rth@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

Research
= Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

Transforming Unstructured Cycles to Structured
Cycles in Sequential Flow Graphs

Rainer Hauser
IBM Zurich Research Laboratory, Switzerland
rfh@zurich.ibm.com
http://www.zurich.ibm.com/csc/bit/bpia.html

July 18, 2005

Abstract

Methods that allow transforming of unstructured cyclic models to
functionally equivalent specifications having only structured cycles are
crucial for automatically deploying graphical business process or work-
flow models, e.g., in the form of Universal Modeling Language (UML)
activity diagrams, to an underlying platform based on a structured pro-
gramming language, e.g., the Business Process Execution Language for
Web Services (BPEL4WS). We present a method based on two simple
transformation rules that can be applied to any sequential model without
node-splitting in case of irreducibility. We further explore the effect of
different rule-selection strategies based on these two basic rules as well as
three other rules which are specializations of one of them.

1 Introduction

With the trend towards model-driven architecture [1] and development, graph-
ical modeling languages such as the Universal Modeling Language (UML) gain
importance as can be seen from the many new packages added to UML from its
early days to version 2.0, its latest version [2]. The package for activity diagrams
is such an extension for dynamic behavior [3].

UML 2.0 activity diagrams, like many other graphical modeling languages
for business processes and workflows, use one or another form of flow graphs
(directed graphs) and model a behavior with nodes and edges, where nodes rep-
resent activities and edges model the potential continuations from one activity
to other activities. An edge can be seen as a visual representation of a goto as
available in some programming languages.

Flow graphs can become cyclic when certain activities are executed more
than once in a single run of the behavioral model. These cycles are called
unstructured to distinguish them from the well-structured cycles modeled as
explicit while- or repeat-loops. If unstructured cycles in business process or

workflow models have to be eliminated and replaced by structured constructs,
cycle-removal algorithms can be applied [4, 5].

One area where cycle-removal algorithms are needed is the field of transfor-
mations from a source metamodel that allows unstructured cycles to a target
metamodel that only allows structured constructs. An example of such a trans-
formation is the compilation of UML 2.0 activity diagram models to the Business
Process Execution Language for Web Services (BPEL4WS) [6]. Another area
where cycle-removal algorithms are useful is management of complexity, where
they can help analyze large flow graphs in order to understand the intended
behavior. As in structured programming, structured loops are easier to under-
stand than unstructured cycles.

Different algorithms can be used to remove cycles in sequential flow graphs,
two are discussed in [4]. The state-machine controller method basically inter-
prets the nodes as states and the edges as transitions. It executes the activities
in a single while-loop and keeps track of what the next activity is going to be.
This method can be applied to any flow graph. The goto-elimination method
on the other hand extracts the intended cycle-structure and replaces the cy-
cles found with structured cycles. This method can only be applied, without
additional aids, to flow graphs that are well-structured enough.

The connectedness of nodes in a flow graph with several nodes is a kind of
measure for how well-structured the flow graph is. If we start with an acyclic
graph, it is well-structured and can be transformed into a structured program
with only if-statements. We can add more edges, and at a certain point in time,
the flow graph becomes cyclic. The flow graph is still well-structured and can be
transformed into a structured program with if-statements and one repeat-loop.
If we progressively add edges, the flow graph evolves until it eventually becomes
unstructured. When every node has an edge leading to every other node, the
flow graph has become completely unstructured and can be traversed in any
possible way. Any set of nodes with two or more nodes contains cycles.

Compiler theory came up with the concept of reducibility to define when
a flow graph is well-structured [7]. The T1-T2 analysis is one algorithm to
determine whether a flow graph is reducible [8]. The concept of reducibility
has proved valuable over the past three decades as many goto-elimination in
programming languages can only be applied to programs whose control flow
graph is reducible [9, 10]. If a flow graph is irreducible, auxiliary methods such
as node-splitting can be applied to regain reducibility, but the consequence is
that nodes, i.e., pieces of code, have to be duplicated and this is not always
desirable [11]. Since node-splitting increases the size of a flow graph, techniques
have been suggested for the optimal strategy to split the nodes [12].

Various definitions for reducibility have been suggested, and the complexity
of the corresponding algorithms to determine reducibility of a flow graph has
been studied [13], but all these definitions of reducibility are equivalent. Despite
this strong empirical evidence! that “well-structured” means “reducible” for flow

IThe evidence may in the end not be as strong as it seems because the different definitions
were not proposed completely independent of each other.

graphs, the class of flow graphs, for which cycle-removal can be applied without
node-splitting or other similar methods, can be extended in a natural way to
any sequential flow graph. This has the advantage firstly, that all sequential
flow graphs can be transformed using a single algorithm, and secondly, that no
auxiliary methods such as node-splitting are needed for irreducible flow graphs
and therefore no code has to be duplicated.

To do so, we introduce two simple transformation rules, called L and C,
which can be applied in any order to any sequential flow graph in order to
produce a structured program that is functionally equivalent. For rule C, we
further define three specializations in order to guide the transformation by se-
lecting priorities for the different rules. This leads to more fine-grained control
over the resulting program and allows the transformation to be optimized for
specific needs. (Based on flow graphs, the transformation is restricted to input
models without unstructured jumps into and out of structured elements such
as while-loops as allowed by other goto-elimination algorithms [14]. This helps
keeping the rules simple.)

In Section 2, the transformation rules are introduced and their effect is
shown, while we discuss how the selection and application strategy of the rules
influence the result of the transformation in Section 3. Finally, the paper con-
cludes with a summary and outlook in Section 4.

2 The Transformation Algorithm

The transformation is based on two rules using a pattern with an edge and the
nodes at either end. To formulate them, some basic definitions are needed.

2.1 Basic Definitions

A flow graph G(N, E,n;,ny) is a directed graph with a set of nodes N, a set of
edges F, an initial node n;, and a final node ny. For an edge e, leading from
node n; to node ngy, the notation n; — ny is used. With e = ny — no € FE,
node n; is called the source of the edge e and the predecessor of node na, and
node ny is called the target of the edge e and the successor of node ni;. An
edge n — n from a node to itself is called a self-loop. In a flow graph, there
are no edges leading to the initial node n;, and no edges leaving the final node
ng. A path from ng to n is a sequence of edges nl — ni € E (i = 1,...,m)
such that ny = nl, nt = nt' (1 <i < m) and n}® = n;. In the following it is
assumed that there is always a path from the initial node n; to all other nodes
and a path to the final node ny from all other nodes. The complementary flow
graph G'(N’, E’,n;’,ny’) of a flow graph results when the direction of all edges
are swapped and the initial and final nodes are exchanged, i.e., time is reversed.
Formally, N' = N, n;/ = ny, ny/ = n; and ¢ = ny — ny € E’ if and only if
e=mny1 — ns € K.

In order to represent business processes and workflows, we extend the defi-
nition of a flow graph. First, a node is assumed to be annotated with a behavior

that describes what the node as an activity does?. Initially, the behavior of node
A will be written as invoke A, and the behavior of the initial and final node is
empty. Secondly, a condition called guard is assigned to every edge such that
the guards of all edges leaving a node are mutually exclusive and exhaustive.
The guards state which edge will be fired by the node when the execution of the
node terminates. As a convention, the guard for an edge A — B will be written
in this paper as AB, and the names S and T are used for the start (initial) and
the termination (final) node, respectively. Figure 1 shows an example of a flow
graph with these annotations.

invoke B

AB A
SA
.—> invoke A

CB

AC v

invoke C

Figure 1: Sample flow graph.

2.2 Initial Transformation Step

The guards in a flow graph are originally expressions over variables within the
scope of a node that tests whether the guards are true. Because the setting of
these variables and the tests may become separated during the transformation,
additional variables have to be introduced and maintained in order to keep the
intended execution logic correct. (Similar variables are needed in other goto-
elimination methods [9, 14].)

In an initial transformation step one single variable, called next, in the scope
of all nodes, i.e., readable and writable by all nodes, in the flow graph is first
introduced. It is used to store the next node to be executed. Secondly, the
initial behavior invoke N for a node IV is replaced by

invoke N;
if (c1) { next := N1 }
if (cn) { next := Nn }

where ci is the original guard of the edge N — Ni (for 1 <4 < n). Lastly, the
initial guard ci for every edge N — Ni is replaced with next = Ni.

The simple schema introduced here in the initial transformation step basi-
cally uses the variable next to store the goto-target similarly to the schema used
in the state-machine controller method [4].

2The behavior is supposed to be described with a behavioral metamodel, but a simple
string representation will be used in this paper for compactness of the representation.

2.3 The Two Transformation Rules

The two transformation rules are based on a pattern that consists of an edge
M — N with its source M and its target V. An edge is either a self-loop or not.
Thus, the only two patterns that are possible are the ones shown in Figure 2.
One of the transformation rules, called L, removes the self-loop in Figure 2 a,
and the other, called C, merges the two nodes in Figure 2 b and simultaneously
removes the edge. Because a flow graph contains only a finite number of nodes
and edges and each rule removes at least one edge, the algorithms eventually
terminates. The result is a flow graph with a single node and no edges, because
otherwise one of the rules could still be applied.

The application of a rule in a transformation step modifies the flow graph
by merging nodes and removing edges, updates the behavior of nodes, and may
change the guard of edges. The result of the transformation is the behavior of
the single remaining node when the rules can no longer be applied.

a) b)
Figure 2: Possible patterns.

Figure 3 depicts the transformation rule L that is applicable to an edge
M — N if M = N. The self-loop with guard c1 is removed and the node with
behavior bodyN before the transformation step is modified.

repeat {
bodyN

bodyN [€1 mm)
2 c3 c2 c3

} while (cl)

Figure 3: Transformation rule L.

The behavior of node N is wrapped into a repeat-loop with the guard of
the removed edge as its loop-condition. All other edges of node N remain
unchanged. This rule is responsible for introducing loops into the behaviors of
the nodes.

Figure 4 depicts the transformation rule C' that is applicable to an edge
M — N if M # N. The nodes M and N with behavior bodyM and bodyN
before the transformation step are merged, the edge leading from M to N is
removed, and the other edges with their guards are adapted appropriately.

The behavior of the resulting node executes bodyM only if c2|c3, the disjunc-
tion of all guards of incoming edges of M, is true while bodyN is executed only
if c1lc4lch, the disjunction of all guards of incoming edges of NV, is true. The

c2 c6 €2, (c21e3) {

e3 bodyM o7 bodyM
1e3|cdl|y
. bodyX | cl %de%#%bdx;—»
| oow® v Poy® Ey ey if (cllcd|c5) {
c4® bodyN [c8 bodyN

c5 c9 c5 Q—/ c9

Figure 4: Transformation rule C.

symbol “|” represents the logical or. The new node inherits all incoming and
outgoing edges of M and N except for the removed edge. The guards of incom-
ing and outgoing edges remain unchanged except if both nodes originally had an
edge from or to a third node (here nodes X and Y'), the two edges are merged
and their guards are combined with a disjunction. This rule is responsible for
introducing conditionals into the behavior of the nodes.

Rule C' wraps the original behavior of both nodes into if-statements. This
is not always necessary, because if the source node has only one outgoing edge
or the target node has only one incoming edge, and this edge obviously has to
be the edge that will be removed by the transformation step, the rules can be
simplified as shown in Figure 5.

c2 C2,0if (c2]e3) {)

3| bodyM bodyM
. bodyX cl !
S S bodyN
c4¥ bodyN
c5 c9 a) c5 / c9

bodyM
if (el) {
bodyN

c9

Figure 5: Specializations of rule C.

We introduce the following specializations for rule C'. Rule C; in Figure 5 a is
applicable if node M has only one outgoing edge, the edge M — N. The guard
of this edge must always be true, and the second if-statement is not necessary,

because bodyN must be executed when the merged node is reached. Rule C; in
Figure 5 b is applicable if node N has only one incoming edge, the edge M — N.
Node N is only reachable through node M and the first if-statement is therefore
not necessary. Rule Cy; shown in Figure 5 ¢ specializes both rules Cs and Cj
further and is applicable when the two nodes M and N build a simple sequence.
No if-statement is therefore necessary.

2.4 Categorization of Flow Graphs

The transformation rule C' and its three specializations Cs, Cy, and Cy; form
a lattice as shown in Figure 6 a. These rules together with rule L can, by
ignoring the behaviors of the nodes and the guards of the edges, also be seen as
reduction rules as used in the T1-T2 analysis to determine whether a flow graph
is reducible [8]. Because rule L corresponds to T1 and C; corresponds to T23,
rules L and C} define the set of reducible flow graphs. Similarly, for completeness
of terminology, we define a flow graph as complementarily reducible if and only
if its complementary flow graph is reducible, and we also introduce the term
symmetrically reducible through L, Cs, and C} the same way as reducibility is
defined through L and C;. A flow graph can be reduced by a set of rules if at
the end, when the rules in the set can no longer be applied, it contains only
one node and no edge. This leads to the categorization of flow graphs shown in
Figure 6 b, indicating how well-structured a flow graph is.

C
c s/ s reducible ;Cnoznr:?allfi-ly
% acyclic educible
Cq
symmetrically reducible
a) b) sequential

Figure 6: The lattice of the C rules and categorization of flow graphs.

We describe each of the categories and discuss the main properties of their
members:

1. A flow graph is linear if and only if it can be reduced by the rule Cs;.
In other words, there is only one path from the initial to the final node
in a linear flow graph, and each node is visited exactly once. Linear flow
graphs are sequences.

3These two rules as transformation rules only use the guard of the removed edge in the
condition of the repeat-loop and the if-statements, respectively, but no guards of other come-
from-edges. This is the distinguishing feature of reducibility.

2. A flow graph is acyclic if and only if it can be reduced by one of the rules
Cs, Ct, or C. Because flow graphs have a single initial and final node, tree
structures are not possible. Thus, all three rules can reduce the same flow
graphs.

3. A flow graph is reducible if and only if it can be reduced by the two rules
L and Cy. This set obviously contains the linear and acyclic flow graphs,
but also certain cyclic flow graphs: the cyclic flow graphs where each cycle
has a single entry.

4. A flow graph is complementarily reducible if and only if it can be reduced
by L and Cs. Note that L is symmetric with respect to time, and that Cj
and C; complement each other when time is reversed. The set therefore
contains the cyclic flow graphs where each cycle has a single exit.

5. A flow graph is symmetrically reducible if and only if it can be reduced by
L, Cs, and C}. There exist symmetrically reducible flow graphs that are
neither reducible nor complementarily reducible.

6. A flow graph is sequential if and only if it can be reduced by L and C.
(Because the definition of flow graphs used in this paper does not allow
to express concurrency, every flow graph is sequential.)

The reduction algorithms based on these rules are always confluent, i.e., lead
to the same result independent of the sequence in which the rules are applied
and the selection of the node to which a rule is applied. The proof for the T1-T2
analysis in [15] can easily be extended to Cs, and the rules L and C reduce any
sequential flow graph and therefore always lead to the same result.

The sample flow graph in Figure 1 is not reducible because none of the
ordinary, neither initial nor final, nodes has a unique predecessor that is not
the initial node. It is, however, complementarily reducible because node B, i.e.,
the node with behavior invoke B, has a unique successor. By applying Cs, the
nodes B and C are merged and get a self-loop that can be removed with L. In
the rest of the steps, Cs; can be applied to reduce the remaining edges.

Figure 7 shows two symmetrically irreducible flow graphs, without initial
and final node, where Figure 7 b results from Figure 7 a when nodes A and D
are the same node*. If any of the edges in either flow graph is removed, the
resulting flow graph becomes symmetrically reducible.

2.5 Final Transformation Step

The transformation steps may lead to nested if-statements that can be flat-
tened in a final transformation step. Generally, the conditions in guards and
if-statements can often be simplified. When a node has only one outgoing edge,

4Turned into a pattern, the flow graph Figure 7 a with the restriction that nodes A, B,
and C must be different nodes, but A and D can be the same node, can be used similarly to
the subgraph (*) in [8, 15].

0 0
o‘ olNcé

5 0
a) b)

Figure 7: Symmetrically irreducible flow graphs.

the guard must be true and can be eliminated. Further, the transformation
rules may lead to disjunctions such as next = N | next = N that contain the
same term more than once and can be simplified.

In the following examples, we do this silently and also write, to keep behav-
iors compact, next = A | B instead of next = A | next = B.

2.6 Correctness of the Transformation

The behavior of the flow graph is not changed through the introduction of
the variable next in the initial transformation step. To prove that the whole
transformation leads to a program that is functionally equivalent to the original
flow graph, it is sufficient to show that L and C preserve the behavior.

We first observe that for all transformation rules the guards of all outgoing
edges of a new node are still mutually exclusive and exhaustive. They may no
longer form a tautology because one edge is removed by L, but its guard can
never be true after the repeat-loop.

We next show that the transformation rules do not change the execution
logic. The proof for rule L is trivial because the guards of the outgoing edges,
i.e., the conditions c1 and c¢3 in Figure 3, stay correct for the old and the new
behavior and these guards are mutually exclusive. The proof for C' must show
that the behavior of the new node is correct, that the guards of the incoming
edges cannot trigger unintended behavior inside the new node, and that the
behavior of the new node cannot enable the guards of the wrong outgoing edges,
i.e., the conditions ¢6 to c9 in Figure 4. The first two points are obvious and the
last point is guaranteed because the guard of an edge A — B can only contain
a disjunction of terms next = Ci where each C'% is either B or has been merged
in a previous step into B. Note that a node cannot be merged into more than
one node.

2.7 An Example

Figure 8 shows the transformation with the rules L, Cy, and C; applied to the
sample flow graph in Figure 1 after the initial transformation step to set and
use the newly introduced variable next. In a first step, application of Cs merges

next=B

if (next=B) ({
bodyB

} next=T

bodyC

a)
(bodyA \
if (next=B|C) {
repeat {
repeat { if (next=B) {
if (next=B) { bodyB
next=A bodyB next=A }
} o bodyC
bodyA bodvC
°_Y } while (next=B)
next=B|C } while (next=B) _’©

next=T { /next=T
b) c)

Figure 8: Sample transformation result.

node B with C' and leads to the flow graph with a self-loop in Figure 8 a. The
self-loop is eliminated next using L as shown in Figure 8 b where the repeat-loop
replaces the self-loop. In the last step resulting in Figure 8 c, rule C} is applied
to demonstrate how the guard of the edges are used. Cj; could have been applied
instead to avoid the unnecessary if-statement with condition next = B | C. To
complete the transformation, the initial node can be removed and becomes the
initialization, and the final node disappears into implicit termination:

next := A
invoke A
if (AB) {next := B}
if (AC) {next := C}
repeat {
if (next = B) {
invoke B
next := C
}
invoke C
if (CB) {next := B}
if (CT) {next := T}
} while (next = B)

If there would have been more than one edge leaving the initial node, the
initialization would have become a set of if-statements that initialize the variable
next. If the final node is resolved last, only a single edge remains in the flow
graph and rule Cy; can be applied. It is clear that the empty behavior of the
final node has no influence on the program. Terms next = T never appear in
conditions of if-statements or repeat-loops.

10

3 Rule-Application Strategy

As already seen in Figure 8, transformations based on some or all five rules
are not confluent. Though the resulting programs are not equal, they are func-
tionally equivalent. Consequently, different strategies can be used to run the
transformation in order to shape the resulting program. In other words, the
transformations defined by the five rules build a family of transformations, and
the strategy determines the family member. The family of transformations is
outlined as pseudo-code in the Appendix.

Figure 9 shows an example. The flow graph in Figure 9 a contains two nested
loops. To transform them, we used all rules and applied two different strategies.
Giving L highest priority, leads to the result shown in Figure 9 b, and giving L
lowest priority leads to the result shown in Figure 9 c.

I |
.—»[bodyA]—»[bodyB]—»[bodyc HbodyD HbodyE HbodyF]—>©
a)
/ikdyA ‘\\

o repeat {
bodyB
repZat { if (next=A) {bodyA}
if (next=B) {bodyB}
[- bodyC ® 1
white bodyp
while (next=C
}iodyE () if (next=E) {bodyE}
while (next=B if (next=F) {bodyF}

K}iodyF)/ } while (next=B|C)
b) c)

Figure 9: Transformation for nested cycles.

3.1 Rule-Selection Strategy

There are two decisions to be made when choosing the strategy: 1) The subset
of rules to be used, and 2) the priorities of the rules. The first decision deter-
mines the set of flow graphs that can be transformed completely to a structured
program. The second decision influences the quality of the transformation re-
sult. In general, if L has highest priority, the resulting program contains many
repeat-loops, and these loops contain only code that is part of the cycle. There-
fore, the number of if-statements is minimal. If, on the other hand, L has lowest
priority, the resulting program contains a low number of repeat-loops, but un-
necessary code is moved into these loops protected by if-statements to ensure
that the code is only executed when necessary. Therefore, a loop may contain
code that is only executed once as can be seen in Figure 9 ¢ for nodes A and F'.

11

The case where L has lowest priority is worth exploring a bit further. If
the rule-set contains C}, this strategy has the tendency to move nodes to the
right of a cycle into the loop. Similarly, if the rule-set contains C, nodes to the
left of the cycle may get moved into the loop. Because C generalizes these two
rules, nodes on both sides of the cycle are consumed before the loop is resolved,
and — after flattening of nested if-statements — the result for cyclic flow graphs
is similar to the the result of the state-machine controller approach, although
rule C orders the nodes according to the connectivity in the flow graph, while
the state-machine controller approach is completely unordered. In general, rule
C without the help of any other rule can transform any flow graph into a flow
graph with a single node. If this node has a self-loop, the flow graph was cyclic
and a single application of rule L at the end of the transformation can remove
the self-loop. Otherwise, the flow graph was acyclic.

Rule-sets containing Cs and C; not only merge nested but also overlapping
cycles as shown in Figure 10. Because the flow graph in Figure 10 a contains
node A with only one outgoing edge and node D with only one incoming edge,
nodes A and B as well as nodes C' and D can be merged using Cs and Cj,
respectively. These two transformation steps merge the two cycles into one.
Thus, as shown in Figure 10 b, overlapping cycles result in a single loop in case
the rule-set contains L, Cs, and Cy, and the strategy gives L lowest priority.

repeat {
if (next=A) {bodyA}
bodyB
¢ I | bodyC
if (next=D) {bodyD}
.—»[bodyA]—»[bodyB]—»[bodyCHbodyD]—>© } while (next=A|B)
a) b)

Figure 10: Transformation for overlapping cycles.

Disjoint cycles such as the ones in Figure 11 a, on the other hand, can
only be resolved into a single loop if the rule-set contains C, because nodes A
and B both have two incoming and two outgoing edges. Transformed with L
and either C, or C; lead independent of the priorities to the two repeat-loops
in Figure 11 b, while transformed using C' with high priority and L with low
priority produce the behavior in Figure 11 c. A strategy to keep disjoint loops
separate may thus use all rules but give Cs and C} high, L medium and C' low
priority.

3.2 Node-Selection Strategy

Generally, we always resolve initial and final node last, because they become
the initialization and implicit termination of the resulting program. Otherwise,
the nodes are rather indistinguishable from the transformation’s point of view,
as long as only local properties of the flow graph are considered. The only

12

._L:[bodyA]iL:[bodyB]i»@
a)

repeat {

bodyA
} while (next=a) repeat {
repeat { if (next=A) {bodyA}
bodyB if (next=B) {bodyB}
} while (next=B) } while (next=A|B)

b) c)

Figure 11: Transformation for disjoint cycles.

distinguishing features are the number of incoming and outgoing edges of the
source and target node, whether source and target node are the same, and
whether source and/or target node have a self-loop.

The preconditions of the five transformation rules describe local patterns in
flow graphs. To determine whether L is applicable, a pattern with a single node
and a self-loop has to be matched. To determine whether one of the other four
rules is applicable, a pattern with two distinct nodes connected through an edge
and, with possibly some additional rule-specific constraints has to be matched.

The strategy can be further refined through additional and more complex
patterns than the preconditions of the rules in the rule-set. For example, we
have implemented the following strategy: The rule-set contained L and Cy, and
Cy had higher priority than L. Instead of applying L blindly, when C; was no
longer applicable, we used a pattern that preferred nodes with a self-loop and
only one other incoming edge over other nodes with a self-loop. This strategy
minimized the number of repeat-loops, because the node and its predecessor
became applicable for C; after removal of the self-loop.

The fact that the three rules C, C;, and C have the tendency to move nodes
unnecessarily into loops if L has lowest priority, may not always be desired. To
improve this situation in particular, and to fine-tune the strategy in general,
patterns involving more than an edge with its source and target node or even
global properties of the flow graph may have to be used, though we prefer to
stay with local properties as long as possible for performance reasons.

4 Summary and Outlook

The paper presents a family of algorithms that allow the transformation of se-
quential behavioral models with unstructured continuations, e.g., gotos, into
behavioral models with only the structured constructs for loops, e.g., repeat-
loops, and conditionals, e.g., if-statements. The algorithms can be applied as an
update-transformation or as a transformation that creates a new model either
to textual models, e.g, programming languages, in order to eliminate gotos, or

13

to graphical models, e.g., business processes or workflows, in order to remove
unstructured cycles, if representable as flow graphs, although we only demon-
strated the concepts throughout this paper for an update-transformation on a
graphical model where each node has a textual model attached®.

The family of algorithms is based on two general transformation rules, called
L and C, and three specializations of C, called Cs, C}, and Cy;, that have
been derived from generalizations of the reduction rules provided by the T1-T2
analysis [8]. The rule L is responsible for the introduction of structured loops
by resolving gotos that go “upstream”, and the rule C' is responsible for the
introduction of conditionals by resolving gotos that go “downstream”.

A transformation algorithm, i.e., a member of this family, can be defined
by selecting a subset of rules and by choosing a rule-application strategy. De-
pending on the rule-set selected, any source model or only either acyclic, re-
ducible, complementarily reducible or symmetrically reducible source models
can be completely transformed. This has the advantage that no auxiliary meth-
ods such as node-splitting are needed in order to transform the desired set of
source models.

The transformations are preceded by an initial transformation step to save
the continuation conditions. We used a single variable, called next, to store
this information. A more elegant schema is shown in [4], but it cannot be used
for the rules C, and C without modification®. This schema nicely shows the
possible paths in the conditions, and it is well possible, that there are schemas
for the initial transformation step that provide additional insight into the loop
structure and are thus more meaningful than the simple schema used in this
paper.

More serious is the fact that, depending on the requirements for the trans-
formation, the rule-application strategy cannot always be defined accurately
enough only based on local properties of the source model. Giving L highest
priority leads to many loops. Giving L lowest priority minimizes the number of
loops, but moves nodes into the loops that do not belong to any cycle. Further
research may lead to more fine-tuned rule-application strategies.

The rule-application strategy is also the weak point of the goto-elimination
method in [9]. This method corresponds to the rule-set containing L and C;”. Tts
rule-application strategy, i.e., the order of resolution, is based on a topological
sort that analyses global properties of the flow graph, but its results are not
always convincing. Using L and C} only, corresponding to the T1 and T2

5Rule L could produce a LoopNode and rule C' a StructuredActivityNode containing two
ConditionalNodes in UML 2.0 activity diagrams as has been done for the rules L and C% in [5].

6Note that the schema for I and Ct used in [4] with one variable per node N (e.g., called
nextFromN) instead of the single variable for the whole flow graph (e.g., called next) as used in
this paper would change the conditions in the result for C¢ in Figure 5. The guard c¢9 would
become c1 & c9, and the guard c¢7 | ¢8 would become c¢7 | (c1 & c8) with “&” indicating
the logical and.

7L is called derecursivation, and Cy is called substitution. The merging of two edges leading
to the same third node after merging two nodes with C¢ corresponds to factorization. The
initial transformation step is the pre-calculation step, and the flattening of nested if-statements
is called if-distribution.

14

rule of the T1-T2 analysis, respectively, the method also has to deal with code
duplication strategies in case the flow graph is irreducible.

The family of transformation algorithms presented in this paper can only
handle sequential flow graphs. Concurrency, however, is crucial for business
processes and workflows. The question of how to extend this approach to handle
concurrency in a similar way with transformation rules based on local patterns
is a challenging research topic.

Concurrency can range from simple, nicely nested fork-join pairs to arbitrary
cycles in concurrent regions. Using token-flow semantics, nicely nested fork-join
pairs allow static determination of the number of tokens flowing in a system at
any point in time, while concurrent cycles may lead to an unbound number of
tokens. The well-known workflow patterns give a good overview of what kind
of concurrency can be expected in business process and workflow systems [16].

Independent of the current and future restrictions of business and workflow
systems, it would be valuable to understand unrestricted concurrency to the
same degree as sequential flow graphs are understood. If a theory handles
sequential and concurrent constructs uniformly, all the better.

Acknowledgments

We thank Jochen Kiister for his advice, which helped to improve this paper
significantly.

References

[1] OMG: Model-Driven Architecture (MDA). http://www.omg.org/mda/.
[2] OMG: Unified Modeling Language 2.0. http://www.omg.org/uml/.

[3] OMG: UML 2.0 Superstructure Final Adopted Specification. Document
pts/03-08-02, August 2003.

[4] Hauser, R., Koehler, J.: Compiling Process Graphs into Executable Code.
Proc. 3rd International Conference on Generative Programming and Com-
ponent Engineering, LNCS 3286, pp. 317 336, Vancouver, Canada, October
2004.

[5] Koehler, J. et al.: Declarative Techniques for Model-Driven Business Pro-
cess Integration. IBM Systems Journal, 44(1), pp. 47-65, 2005.

[6] OASIS: Business Process Execution Language for Web Services 1.1.
http://www-106.ibm.com/developerworks/webservices/library /ws-bpel/.
May 5, 2003.

[7] Aho, A. et al.: Compilers. Principles, Techniques, and Tools. Addison-
Wesley, 1986.

15

8]

(1]

[15]

[16]

Hecht, M.S., Ullman, J.D.: Flow Graph Reducibility. STAM J. Comput.
1(2), pp. 188-202, 1972.

Ammarguellat, Z.: A Control-Flow Normalization Algorithm and Its Com-
plexity. Software Engineering 18(3), pp. 237-251, 1992.

Koehler, J., Hauser, R.: Untangling Unstructured Cyclic Flows — A Solu-
tion Based on Continuations. On the Move to Meaningful Internet Systems
2004: CooplS, DOA, and ODBASE: OTM Confederated International Con-
ferences, CooplS, DOA, and ODBASE 2004, LNCS 3290, pp. 121-138, Agia
Napa, Cyprus, October 2004.

Carter, L., Ferrante, J., Thomborson, C.: Folklore Confirmed: Reducible
Flow Graphs are Exponentially Larger. Proc. 30th Annual Symposium
on Principles of Programming Languages, pp. 106-114, New Orleans,
Louisiana, USA, January 2003.

Unger, S., Mueller, F.: Handling Irreducible Loops: Optimized Node Split-
ting versus DJ-Graphs. ACM Transactions on Programming Languages and
Systems, 24(4), pp. 299-333, July 2002.

Ryder, B.G., Paull, M.C.: Elimination Algorithms for Data Flow Analysis.
ACM Computing Surveys, 18(3), pp. 277-316, September 1986.

Erosa, A.M., Hendren, L.J.: Taming Control Flows: A Structured Ap-
proach to Eliminating Goto Statements. Proc. International Conference on
Computer Languages, pp. 229-240, Toulouse, France, May 1994.

Hecht, M.S.: Flow Analysis of Computer Programs. Elsevier North-
Holland, Amsterdam, 1977.

Van der Aalst, W.M.P. et al.: Workflow Patterns. BETA Working Paper
Series, WP 47, Eindhoven University of Technology, Eindhoven, 2000.

16

Appendix

The algorithm outlined as pseudo-code works as follows, where input is the
input model passed into the transformation and output the result produced by
the transformation:

graph «— initialTrans f ormationStep(input)
repeat
applied — false
for all rule € strategy while —applied do
for all edge € graph.edges while —applied do
if rule.pattern.match(edge) then
rule.update.apply(edge)
applied «— true
end if
end for
end for
until graph.edges = () V —applied
if graph.edges =0 A | graph.nodes |= 1 then
node € graph.nodes
output — finalTrans formationStep(node.behavior)

end if

The algorithm gets the input model (i.e., the graph) and repeats the trans-
formation steps until either no edge is left in the graph or none of the rules can
be applied anymore. If no edge is left and the graph therefore only contains a
single node, the output of the transformation is the behavior of the single re-
maining node. Otherwise, the output is undefined. If the set of input graphs is
limited to a category as shown in Figure 6 b and the strategy contains all rules
needed to process this category, the transformation always terminates with a
defined result.

Inside the repeat-loop, the algorithm loops through the rules in the strategy
selecting rules with higher priority before rules with lower priority. For each
rule, the algorithm goes through all the edges® and tests whether the pattern
of the rule matches. If it does, the rule updates the graph and sets the variable
applied to true. At this point, the algorithm leaves both for-all-loops and starts
again with the rule that has highest priority.

The strategy can be defined by the user or by the application. If the user can
select the rules and their respective priorities, the result of different strategies
can be compared.

8The pseudo-code leaves out details such as the fact that edges leaving the initial node and
edges leading to the final node are only handled when none of the rules can be applied to any
of the other edges anymore.

17

