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ABSTRACT: The mathematical concept of information density is applied to
the problem of edge detection for application in digital image processing.
The stochastic properties of an image are modeled as Markov chains in x-
and y-directions. Experiments are presented for different probability
distributions, and the results obtained are compared with the well-known
Sobel algorithm.
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1. Introduction

At present, many rgéearch efforts in digital image processing deal with
the geﬁeral theme of image understanding [1], the objective of which is to
clarify issues related to human and machine vision. In this context, two
aspects are of primary importance: The representation and the interpretation

of visual data.

.Representation of visual data

In any technical system, where the primary purpose of the
representation of visual data is intended for the human observer,
the data is represented as an array of spatially and amplitude-—
quantized grey-levels (pixels). This representatidn is denominated
as the deterministic model of an image. However, visual data can
also be represented in stochastic terms. An image is then modeled

as a random field.

Interpretation of visual data

Psychophysiological experiments show that the content inherent
in any pictorial information presented to a human observer can
be subdivided into contours and texture. It is alsc a proven
fact that contours play a key role whenever cognition tasks are

pefformed.

In problems related to image understanding, edge—detection and contour-
finding algorithms-are therefore of primary importance, and the purpose of
this paper is to describe a new approach based on stochastic moaeling and
represéﬁtation of image data.

To obtain a stochastic representation of an image, a fandom field has

to be constructed from the deterministic image. Ideally, the random field



should reflect all the Tknowledge' available in the visual data given

.(a priori or extracted by other processes). A possible approach is to start
the procedure with a primitive random field and subsequently refihé it over
different processing steps like determining statistical dafg, contours and
other stochastic parameters. The iterative process of the refinement of the
random field is illustrated in Fig. 1. The 'knowledge' modeled in the random
field is accumulated in different steps, while the 'knowledge' in the deter-
ministic model is constant. If the resulting random field contains just the
configurations equivalent with respect to the image—pfocessing application
intended, the deterministic model is no longer needed. But the current

state of the theory of stochastic image modeling does not allow exclusive
use of the random field. Consequently, the random field combined wi;h the
deterministic model is used as a representation of the pictorial information

given. As practical examples of random fields, Markov fields (Markov chains

extended to two dimensions) have been used [2].
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Figure 1. Illustration of the process of refinement for the stochastic
model (over—lapping knowledge is hatched).



The purpose of this report is to demonstrate some of the difficulties
in determining a good stochastic model for a givén image and to show the
feasibility of stochastic edge-detection algorithms. We present a version
of a stochastic edge-detection algorithm with the following basic idea.

By scanning unconsciously through an image, our attention is stimulated

by sensitive changes of brightnéss, color, or texture. Therefore, a possible
interpretation of the mechanism of human visual perception of color, shape
etc., is to model this scanning process as a predietion from the known part
of the image to the part next to be seen. A contour point is assumed when our
prediction fails. In images, prediction can be stochastically modeled as
random functions bﬁt we need a measure for the failure of our prediction

in an image point. For this purpose, the concept of information density

has been defined [3]. It is a value attached to each image point expressing
the amount of information the point adds to the total information content

of the image. When this value is higher than the average amount of infor-
mation for ome point, an edge point is assumed. In our case, the stochastic
models used are very primitive, and an edge point can be assumed when the
information—density value is higher than in the independent case.

In our experiments, we approximated the dependences with Markov
chains in the x- and y-directions of the image. The Markov chains are
truncated after two neighbors on both sides of the current point. Two
differént probability distributions on the image and some variants of them
are studied and the results compared with the Sobel algorithm. These
réSults are encouraging even for the rough approximafions used in the

stochastic models.’

2. Information Density

In this section, the necessary mathematical definitions and results

are presented, and a formula for stochastic edge detection is determined.



- 2.1. Random Functions

Stochastically modeled images are arrays of random variables
i i,] R xR
RY j (i,j) e R, xR}
together with a given sample
{Sij l (131) R ¥ Ry}'
In other words, images in this section are finite random functions
{Et | el T},

where T 1is a finite set of indices, and Et is a random variable with
values in a finite set G for each t in T. The given sample {st % 10
restricts fhe random functions to cases with P(F,t = St) 2 @ifer: all t & T,
This restriction is necessary because the direction goes here from sample

to random function and not vice versa. The marginal probability of a

subset 8 of T 1s given as
Pl =
(EES(Et St))

for which we use the abbreviation P(S). [In the same way, we write P(t)

for BAE, 2= s.), and so on.] The conditional probability for S, SZC: T is

defined by
P(S, U S,)
1 2
P(sllsz) T TEG,) ;

2.2. Information Theory of Finite Random Functions

The information content of the event {Et | £ € S} with SC T is
1(8) = - log P(S), where the logarithm to the base 2 is usually taken.
With this definition, information terms are attached to the subsets

of image points. In image processing, one is not interested in the marginal



information content of a subset but in a measure for the information
. content of one image point t. This localized information content should
reflect the dependences between different points. For this purpose, the

concept of information density was defined [3] as

1 1 :
J.(t) =~ ——— I(t | 8), : (1)
S ] ] |

and has the following three properties:
1) For all te T, the information density is not negative:_JT(t) =10,

2) Summation over all t's results in the global information content:

I ol te)s & i
teT :

3) If all points are stochastically independent [i;e., I(8) = tES L)
for all S ¢ T], the information density JT(t) will be equal to the

information. content I(t) of the point t.

For more details, see [31].

2.3. Markov Chains

Finite Markov chains are finite random functions {at | t e T} with a
total -ordering relation defined on the index set T. We set |T| = N and
Tt ooy N without loss of generality. The Markovian property is

usually presented in the form L4]
P(sn = | E‘:n--l = By o E oy =, ) sl e | gn~1 3 gn—l)

which leads to the concept of transition matrices. When the transition
matrix from one point to the next is constant, the Markov chain is called
homogeneous. Two transition matrices can be multiplied to determine the
transition probabilities from one point to the point after the next point,
and it is clear that each subset S5 of T defines itself a Markov chain

{Eﬁ | £ € S} with the induced total ordering relation.



Let us take one subset § T with S = {il, Skt in} and

1 25 F i gus X in < N. With the Markovian property, we get

1 2
n
AN —
J J
= P(Ei =g ) P(Ei =B | &, =8 e . P(Ei L= 8 | H;i E: = & )
1 1 2 % -k 1 n B e j i
nﬁl
P(E s = )
J= 1 gl. g:L gl
E J ] i A i
n-1 )
I Pley < 8 )
=2 ] ]
which trivially results in
n
= AN = — =: = P =
e =g i B Sm ) s B S B L 8 5 B
m m S 7 b m m m-1 m-1 m+1 m+l

(2)

This formula expressed in words says that each random variable is condition-

ally independent of the rest of the chain given its nearest neighbors.

2.4. Information Density of Markov Chains

; + - ’
We set T = Y |res6eTednk! Skt and Fea¥ (BN [ e Tl et
and get with formula (2)

~

; - +
I(t) if S n Tt b, S n Tt ¢
. - +
I(t | min j) if ST, =gz 80T 24
jeSnT : %
I(t |-s) = ] t
- +
I(t | max j) LE SR WD #h BT e
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. - - . - = : + L
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The information density can be written in the form

N-1

1 1 N

J(t) =< ) —— E (t),
P N =0 (Nﬂl) k

where Eg(t) = I(t), and where for k > 0 the following three cases can occurf

1y S AT =6, SnT =
nt ¢’ t“¢
2) §nT = S nT #
nlt”¢s -nt ¢
3) ST # ST ow
n . ¢, n 3 d.
The first case gives
=1 ..
7=1 6
/! (k_l> ECeo| )
g=1
the second
N :
Vo e (o
; k-1
i=t+1
and the third
k=2 t=1 N .
} =1 N- o
¥ty (iz ) ) (k_2i£>1(t | 153D,
2=0 j=1 i=t+1

where (E) =0 form<O0orn <m For k >0, this results in



t=1,

M j=1 s ryedys
E () = ] (k—l (it D 2@
i=1 ,
Yo/w-i
R y (k—l) (T{e1) = 1))
i=t+1l

+

B2 b0l N oy 7 s
R (JR ) (k—2~;> (T(t,i) + I(t,3) - () - T(,3)).
2=0 j=1 i=t+1 : ; ' '

The information density is

i N N n-1
Io(0) =5 | ) a®,t,m) I(m) + Y 1 b,t,mn) I(m,n)|,

m=1 n=2 m=1

where

N-1 E:i)
= z : ifm < €
i R
N-1 (E:T) : : i
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k=1 ( )
i
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k=1 2=0 j=1 i=t+l ( k )

and
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N&% - A
Instead of 2 information terms I(S) with SC T, we only have

N terms I(i) and N+ (N~1)/2 terms I(i,j) for Markov chains.

2.5 Approximations for Edge Detection

Markov chains are the easiest example of random functions. We shall
now apply them to edge detection. We assume that

I(i,5) = TG 1) for [ 1 ~7 | =3,
and take a Markov chain of lenmgth 5 : T = {t-2, t-1, t, t#l, t+2}. The

information density is in this case:

Wl Ne o Wik o

_ 1 1 =1
JT(t) = I(t-2) - E-I(t—l) - T(t+1) 2 I(t+2)

I(t)

+1
= o=

L{t-2,t) I(t,t+2)

-+

I(t_lst) I(t:t+1)
T(t=1,t+l) (4)

as can be seen from formula (3).
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With formula (4), we can develop an edge-detection algorithm.
We assume that the current image point together with its two nearest
neighbors on each side in the same column form a Markov chain of length 5.
No dependences between the columns are modeled. This algorithm can aniy
find contours ortﬁogonal to the columns (see Fig. 2a). The same algorithm
with the rows modeled as Markov chains detecté edges only orthogonal to
the rows (see Fig. 2b). Combined, the process running in both directions

results in a bitmaﬁ with edges detected in all directions (see Fig. 2c).

a)’ . = o c)

Figure 2. Markov—-chain-based stochastic edge detection. a) x-direction only,
b) y-direction only, c) both directions combined.
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The image for which Fig. 2 presents the detected contours is shown as

Tiee 3.

Figure 3. Original image.

To obtain the bitmap as shown in Fig. 2c, the following threshold

value is used:

0 if JT(t) < T ()

B(t) =
1 if JT(t) > I(t)s
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An edge point is assumed when the information density is higher than in
the independent case.

We used here a rough approximation for the information density of a
Markov chain because Points with a distance of more than two points are
approximated as independent. Also, the use of one-dimensional raﬁdbm
functions on images is a poor simplification, since one would like to

model dependences in the x- and y-directions simultaneously.

3. Stochastic Models and Edge Detection

We have deduced the formula for the information density of Markov
chains which is used in this section. In this formula, the information
terms I(i), I(i,i+l), and I(i,i+2) occur. We now discuss solutions to

determine these values.

3.1. First and Second-Order Statigtics

In an image of sufficient size, we can determine the probabilities

P(ai = g), P(E;i = &5 £i+1 = gz), and P(éi =8> gi+2 = gz) from the first

and second-order statistics. The general idea behind this stochastic model
is the assumption that the probability P(Ei = g) only depends on the value
g and not on the value i, and that the probability P(Ei =8> Ej = gz)
only depends on g8ys 8 and |i - j|. In this sense, the Markov chain is
assumed to be stationary. It must be remarked that this approach does not
guarantee the Markovness of this probability distribution. The Markovness

can be forced by determining P(g. =8> £ = gz) with matrix multiplication

i+2

from the tranSLtlon probabilities computable with P(E = g) and

P(E. = 815 8541 = gz). The algorithm with the stochastlc model based on
1

first and second-order statistics can detect contours (see Fig. 4).
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Figure 4. Result of the stochastic edge-detection algorithm
with first and second-order statistics only,

We should mention an interesting gedanken experiment. If we take
an arbitrary permutation of the finite set G of grey levels, in most
cases the resulting image will be a more-or-less homogeneously grey image,
where an obsefver cannot see what it represents. But the algorithm
described here detects the same contours as in the original imagé. The

second-order statistics have no peak in the diagonal, but the information



14

density is the same for each image point. For this surprising effect,

the quantization is responsible. In this semse, the stochastic edge-detection
algorithﬁ based on first and second-order statistics is an analysis tool

for images.

To obtain an adaptive version of this algorithm, the first and second-
order statistics can be determined for an appropriate neighborhood of the
current image point. In this case, the random function approximated as a
Markov chain is no longer stationary. This approach reflects the fact that
human observers see contours with respect to some neighborhood, but image
regions far away do not influence the contours.

The approach with first and second-order statistics has the advantage
that also contours in image regions with weak contrast are found. Contours

are detected the Sobel algorithm does not find.

3.2, Artificial Probabilities

The second-order statistics for points close tbgether in natural
images usually show a dominant peak in the diagonal, because the probability
is high that the points have more or less the same grey level. Instead of
determining the first and second-order statistics, we can construct
artificially uniform first-order statistics and second-order statistics
with the dominant peak in the diagonal (see Fig. 5). This approach gives
results similar to those produced by the Sobel algorithm.

A variant of this approach is to determine the correct first-order
statistics and to construct the second-order statistics only.

This approach has the disadvantage that the probability distributions
do not reflect any characteristics of the image given. It is not in the
sense of stochastic image processing to take one stochastic model for all
images possible, where the main idea is to translate the knowledgé about

the image into a stochastic model.
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Figure 5. Result of the stochastic edge—detection algorithm
with artificial statistics only.
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3.3. Mixed Approach

We can improve the approach of the first and second-order statistics
by the aﬁproach of the artificial probabilities without adding its disadvan-
tage. We retouch the original second-order statistics by adding some points
to the diagonal to accent the.peak. This is the form of the algorithm in
which we discuss its results (see Fig. 6). The contours should be connected

~and thin.

Figure 6. Result of the stochastic edge-detection algorithm
with artificially enhanced second-order statistics.
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3.4. The Sobel Algorithm
To compare the algorithm described, we use the Sobel algorithm which
is easy to implement and produces excellent results [5]., The Sobel algorithm

calculates the convolution of the image with the two matrices

-101 -1 -2 -
-2021 , g8
T2

|—‘D|--J

=107 1

and combines the two results with a nonlinear point operation. We implemented
the rms point nonlinearity. This algorithm has the disadvantage that the
threshold must be opt1m1zed by human intervention. In Fig. 7, we tried to

suppress all insignificant points and to show all the contours detected.

Figure 7. Result of the Sobel edge~detection
algorithm.
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3.5. Examples

We now present a series of images with the results'produced by the
stochastic algorithm described and by the Sobel algorithm. The examples
are selected to demonstrate special problems of edge-detection in general.
The scanned text image we present first shows noise due to the reverse

shining through the paper (see Fig. 8). With requantization, the noise can be
h\ﬂn e h‘
1 der TcHEBYCHEFFschen i
P{|s,- >
lich ist die MARKOFFsche

lie normale Stabilitdt hin
ind s, — E(s,) gleichmal

a)
ind &, ~ 5 (&), & G
3 3 _ i&g ‘"”‘f if""" _.,ﬁ*)"k ﬁ
b) : i85

Figure 8. Edge detection on scanned text. a) original image, b) stochastlc
edge detection, c) Sobel edge detection.
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significantly reduced (see Fig. 9). But for this case, the contrast is so

good that all edge-detection algorithms.will detect more or less the same

contours.

n_‘u“ —_1

1 der TCHEBYCHEFFschen

P {]Sn =

lich ist die MARKOFFsche

lie normale Stabilitit hin

ind s, — E(s,) gleichmal

a)
= ywgy (] | \‘.'_ﬁ C ey
1 der Tmm?mﬁschm 1 der Tcmmvmnﬁ-‘schen
P{l&a;- P{lﬂm"
lich ist die MARKOFFsche lich ist die MARKOFFsche
lie normale -S&abilitat hin lie mormale Stabilitﬁt hin
ind s, — E(s,) gleichmaB ind 55— E (sn) gleichm&l:
) &)

Figure 9. Edge detection on requantized scanned text. a) Original image,
b) stochastic edge detection, c) Sobel edge detection.
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In Fig. 10, the two algorithms detect different contours. The stochastic
algorithm finds contours around the ear, while the Sobel algorithm gives

a good contour of the tree on the right side of the house.

Figuré 10. Edge-detection example. a) Original image, b) stochastic edge
detection, c) Sobel edge detection.
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Edge detection in noisy images 1s a problem. We changed 107 of the
image points of the image in Fig. 10 randomly into random-generated grey
levels. The Sobel algorithm fails, and it should be noted that both
algorithms use the same number of image points to find the contours, but

arranged in different forms (see Fig. 11).

Figure 11. Edge detection on the image of Fig. 10 with noise added.
a) Original image, b) stochastic edge detection, c) Sobel

edge detection.
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We present two other examples in Figs. 12 and 13. The first image

contains many changes in contrast which give the impression of noise. The

second image has very unsharp contours which are hard to detect.

Figure 12. Edge-detection example. a) Original image, b) stochastic edge
detection, c) Sobel edge detection.

o
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b) c)

Figure 13. Edge-detection example. a) Original image, b) stochastic edge
detection, c) Sobel edge detection.

The last example should demonstrate that, for stochastic edge detection,

larger regions must be taken instead of a cross with nine image points.
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4, Conclusion

In two different processes, we modeled the rows and columns of an image
as Markov chains. For these, we calculated a very rough approximation of
the information density JT(t). An edge point is assumed when the information
density JT(t) at point t is greater than the value for the independent
case I(t) for at least one of the two processes. To calculate the infor-
mation density effectively, the probability distribution of the image must
be given. It can be determined either via first and second-order statistics
or via an artificial construction.

It.is not éatisfactory to divide the process into two pfoéessas, one
in the x—- and the other in the y-direction. In image processing, random
functions with two—dimensional index sets should generally be used. The
intent of this preliminary solution was not to present a final edge-
detection algorithm, but to demonstrate the feasibility of the concepts
presented in [3], and to give some ideas of the difficulties in stochastic
image processing. The important remaining problem is the development of

better stochastic descriptions for images.
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