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Abstract— Analysis of workflows in terms of structural correct-
ness is important for ensuring the quality of workflow models.
Typically, this analysis is only one step in a larger development
process, followed by further transformation steps that lead from
high-level models to more refined models until the workflow can
finally be deployed on the underlying workflow engine of the
production system. For practical and scalable applications, anal-
ysis and transformations of workflows must both be integrated
to allow incremental changes of larger workflows.

In this paper, we introduce the concept of a region tree for
workflow models that can be used as the central data structure
for both workflow analysis and workflow transformation. A
region tree is similar to a program structure tree and imposes
a hierarchy of regions onto the workflow model. It allows
an incremental approach to analysis and transformation of
workflows and thereby significantly reduces the overhead because
individual regions can be dealt with separately.

I. INTRODUCTION

Graphical notations for workflow models or business pro-
cess models (in the following called workflows) have been
used for a long time to describe behavior in terms of a control-
flow between activities and their temporal relations. Workflows
are therefore a relatively advanced area, in which model-driven
architecture (MDA) [1] or, in a broader sense, model-driven
engineering (MDE) [2] concepts and methods have been
applied. The development of an application based on graphical
models is a complicated process, leading from analysis models
via design models to a complete and deployable IT solution
through partially manual and partially automated steps [3].
To support this development cycle including the deployment,
(1) tools are required for validation, verification, optimization
and testing of workflows, and (2) algorithms are needed
for transforming a workflow into the elements and structure
required by the underlying workflow or execution engine (in
the following called runtime platform).

The challenge of validation, verification and testing is to
discover errors and unexpected behaviors as early as possible,
but also not to restrict the designer by imposing unnecessary
overhead. Structural conflicts (most importantly deadlocks)
as one source of errors in a workflow can be detected by
various methods. Graph reduction rules were introduced in [4]
to detect structural conflicts in acyclic workflows. One of the
rules in [4], the so-called overlapped reduction rule defined for
an infrequently occurring pattern, turned out to be insufficient
as demonstrated on a sample workflow and was replaced
in [5] by three others, though very complicated rules. In [6],

another valid workflow was presented in which the original
rules fail, and a case was made for using Petri-net theory and
tools to detect structural conflicts because they outperform
the reduction algorithms operating on workflow graphs and
can also handle cyclic workflows. Despite this, rule-based
approaches are not intrinsically limited to acyclic workflows
and are advantageous because they can localize errors as well
as help understand the structure of general workflows.

In a model-driven approach to workflow modeling, work-
flow analysis for structural conflicts is not a one-time activity
but is performed repeatedly on different (or even the same)
parts of a larger workflow model. The main reason for this
is that a workflow model is iteratively refined from a more
abstract to a more concrete form [3]. One important trans-
formation used in this refinement process is the deployment
step, which transforms the workflow into the form required by,
and possibly optimized for, the runtime platform. This trans-
formation is not always straightforward, because graphical
modeling languages for workflows, such as Unified Modeling
Language 2 (UML2) Activity Diagrams [7] and the notation
used by the IBM WebSphere Business Modeler (Modeler) [8],
allow specification of models that are less structured than
allowed by some runtime platforms such as the workflow
engines for the Business Process Execution Language for
Web Services (BPEL) [9]. In BPEL, unstructured cycles, for
example, must be converted to structured do-while loops.
Thus, if the target runtime platform is based on BPEL the
unstructured parts of the workflow that cannot be represented
in BPEL must be resolved into structured constructs [10].

To enable workflow analysis and workflow transformation
for an incremental and iterative approach, we introduce the
concept of a region tree. This region tree imposes a hierarchi-
cal structure on the workflow model similar to the program
structure tree [11]. Individual regions can then be analyzed
separately, and one region may be transformed and refined
without affecting other parts of the workflow model. The
region tree can be built by rules that adapt and extend the
reductions rules for detecting structural conflicts in [4][5].
These rules, called region-growing rules, are used to construct
a hierarchy of regions in which structural conflicts become
visible at the interfaces between interacting regions. The
resulting tree of regions can be used to optimize workflows and
to transform unstructured or partially structured workflows into
more structured, equivalent versions of the workflow. Unlike
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Fig. 1. Workflow graph elements

the program structure tree, the region graph may contain not
only the special type of regions called single-entry-single-exit
(SESE) regions [11], but also more general regions.

The paper is organized as follows. Section II introduces the
basic workflow concepts. In Sections III and IV, the region tree
and the region-growing rules for workflows are presented, and
in Section V, their application is discussed. The combination
of analysis and transformation using the region tree is shown
on an example in Section VI. Finally, the paper concludes with
a summary in Section VII.

II. BASIC CONCEPTS

General workflows and useful subclasses of workflows with
their properties are introduced and discussed.

A. Well-formed and Well-behaved Workflows

Various graphical notations for workflows exist, but they
are all based on the concept of directed graphs. We use the
definition of workflows and the graphical representation for
their elements, as shown in Fig. 1, similar to the notation
used in [12] (but not limited to only two edges). The start
node, the end node, and the activity1 are shown in 1a, 1b,
and 1c, respectively. The sequential control nodes choice and
merge in 1d and 1e are also called or-split and or-join2. The
parallel control nodes fork and join in 1f and 1g are also called
and-split and and-join. These nodes can be connected through
edges, and a directed graph built with these elements is called
a workflow. In the following we assume that the workflows
are well-formed.

Definition 1: A workflow is well-formed if and only if it
has the following properties:

1) There is exactly one start node with no incoming edges
and one outgoing edge.

2) There is exactly one end node with one incoming edge
and no outgoing edges.

3) Every activity has exactly one incoming and one out-
going edge.

4) Every or- and and-split has exactly one incoming edge
and at least two outgoing edges.

5) Every or- and and-join has at least two incoming edges
and exactly one outgoing edge.

6) There is a path from the start node to every node, and
a path from every node to the end node.

1Note that the start and end nodes are sometimes considered activities and
sometimes no-op elements, although the distinction is not relevant here.

2The term “or” is slightly misleading, and the term “xor” is sometimes
used instead, because one and only one edge is assumed to be enabled.

We introduce the semantics (i.e., the behavior) of a well-
formed workflow rather informally in terms of Petri-net-like
tokens. The start node emits a token on its outgoing edge
when the workflow is started. An activity starts when a
token arrives on its incoming edge (i.e., when the incoming
edge is enabled), and eventually ends by sending a token
to its outgoing edge. The end node consumes a token on
its incoming edge and terminates the workflow. The or-split
emits a token on one of its outgoing edges after consuming a
token on its incoming edge. The or-join emits a token on its
outgoing edge after consuming a token on one of its incoming
edges (and thus behaves according to the “multiple executions”
semantics defined in [12]). The and-split consumes a token on
its incoming edge and emits a token on all outgoing edges. The
and-join emits a token on its outgoing edge after consuming a
token on all incoming edges. As we allow cyclic workflows,
we assume that every or-split will enable each of its outgoing
edges eventually if reached often enough.

Executions of a workflow are defined through the flow of
these tokens. An execution terminates as soon as the end node
consumes a token. It terminates successfully if at this point no
other tokens are present in the workflow.

Definition 2: A well-formed workflow is well-behaved if
and only if all possible executions terminate successfully.

B. Structured and Separable Workflows

There are several levels of how structured a workflow is. The
simplest level, apart from linear workflows (i.e., workflows
with a single path from start to end node), are called structured
in [13] and consist of those workflows in which each or- or
and-split has one corresponding or- or and-join, respectively.
If the sequential parts of a workflow (i.e., those parts only
using or-splits and -joins) can be separated from the parallel
parts (i.e., those parts only using and-splits and -joins), we
call the workflow separable.

To define these levels, we introduce the concept of a single-
entry-single-exit (SESE) region from compiler theory [11].
Informally speaking, a SESE region is a set of nodes such that
there is exactly one edge (called the incoming edge) leading
from nodes not in the region to nodes in the region and exactly
one edge (called the outgoing edge) leading from nodes in the
region to nodes not in the region. The set of all nodes of a
well-formed workflow other than the start and end node build
a SESE region3, with the edge leaving the start node as the
incoming edge and the edge going to the end node as the
outgoing edge.

We further introduce the concept of substitution, i.e., of
replacing an edge e in a workflow w1 with a well-formed
workflow w2. Edge e is removed from w1, the start node and
the end node of w2 are removed from w2, and the remaining
parts of w2 are plugged into w1 such that the original source
of e becomes the new source of the edge leaving the original
start node of w2 and the original target of e becomes the new

3In the following figures, we will often only show the SESE regions
instead of the workflows with start and end nodes, because many properties
of workflows can be generalized as properties of SESE regions.
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Fig. 2. Substitution of workflow w2 for edge e in workflow w1

target of the edge going to the original end node of w2. This
substitution is depicted in Fig. 2. A part of workflow w1 with
edge e is shown in 2a, workflow w2 to be plugged into w1

in 2b, and the result of the substitution in 2c.
Definition 3: A workflow is structured if and only if it can

be constructed using the following inductive rules:
1) All well-formed linear workflows (i.e., workflows with-

out control nodes) are structured.
2) All well-formed workflows with one or-split and one

or-join as the only control nodes are structured.
3) All well-formed acyclic workflows with one and-split

and one and-join as the only control nodes are structured.
4) If w1 and w2 are structured workflows and w1 contains

an edge e, the result of replacing e with w2 in w1 is
structured.

In structured workflows, there is a corresponding join
control node for each split control node. Thus, structured
workflows can be represented in XML such that split and join
control nodes correspond to start and end tags as is done in
BPEL. All well-formed sequential workflows (i.e., workflows
with only sequential control nodes) have an equivalent struc-
tured form as shown in [13]. For workflows with parallelism
this is, however, not true, and BPEL needs, as a consequence,
the link element in addition to the flow element.

Definition 4: A workflow is separable if and only if it can
be constructed using the following inductive rules:

1) All well-formed workflows with only or-splits and or-
joins as control nodes are separable.

2) All well-formed acyclic workflows with only and-splits
and and-joins as control nodes are separable.

3) If w1 and w2 are separable workflows and w1 contains
an edge e, the result of replacing e with w2 in w1 is
separable.

The inductive construction rules guarantee that separable
workflows can be partitioned into SESE regions such that each
region contains either only sequential or only parallel control
nodes. Obviously, all structured workflows are separable, but
there are separable workflows that are not structured.

Lemma 1: All separable workflows are well-behaved.
Proof: In a SESE region with only sequential control

nodes, all nodes (or other SESE regions) consume one token
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Fig. 3. Overlapped patterns

and eventually emit one token. Thus, there is exactly one token
in the region between the time the token enters the region and
the time it leaves it4. In an acyclic SESE region with only
parallel control nodes, one token passes through every edge
exactly once.

As just shown, all structured and separable workflows are
well-behaved, but there are well-behaved workflows that are
not separable. The so-called overlapped patterns shown in
Fig. 3 mix and-splits with or-joins or or-splits with and-joins
in such a way that executions of the workflow can terminate
successfully. The pattern in 3a made it necessary to define a
special rule in [4], and all its executions terminate successfully.
For the dual pattern (i.e., the pattern where or-splits and -
joins are replaced with and-splits and -joins and vice versa)
in 3b, executions can only terminate successfully if the two or-
splits both enable either the upper edge or the lower edge, and
the pattern is therefore not considered well-behaved. If two
or more or-splits in a workflow need additional information
to make the workflow execute, their conditions are called
synchronized. Other examples in which two or-splits need
synchronization of their conditions (e.g., to exit two parallel
cycles at the same time) are discussed in [13].

C. Structural Conflicts

Not all well-formed workflows are well-behaved. Fig. 4
shows simple cases of structural conflicts. The first two were
identified in [4][12][13], where 4a is called deadlock and
4b is either called lack of synchronization or multiple active
instances of the same activity. The third structural conflict
shown in 4c can only occur in cyclic workflows. We call it
parallel cycle.

The and-join of the deadlock never emits a token if the
or-split only gets a single token. The or-join of the lack
of synchronization always receives at least two tokens and,
depending on the semantics of the or-join [12], either discards
all but one token or emits one token for each of them5. Both
structural conflicts may not always be seen as an error, but are
certainly dangerous and need careful inspection. In general,

4As mentioned above, we assume that all outgoing edges of an or-split are
eventually taken to avoid infinite loops in cyclic workflows.

5As the or-join allows different behaviors, the name lack of synchronization
is more appropriate than the name multiple instances of the same activity.
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deadlock is a situation in which an and-join gets some but not
all tokens on its incoming edges, and lack of synchronization
is a situation in which an or-join gets more than one token
on its incoming edges. The parallel cycle is also a kind of
deadlock: if the nodes on the path from the and-split back to
the and-join can only get a token through the path from the
and-join to the and-split, the and-join never emits a token.

III. REGION ANALYSIS

Regions with their input and output logic are introduced,
and region trees for workflows are defined.

A. Regions

A SESE region is a part of a workflow that can be hidden
behind an interface to the remaining parts of workflow. The
interface in this case is very simple as it consists of an input
and an output edge. This concept can be generalized to more
complex interfaces defined through multiple incoming edges
with an input logic and multiple outgoing edges with an output
logic. These concepts are defined in the following.

A region is a set of nodes and a set of edges as depicted in
Fig. 5. Nodes n2 and n3 belong to the region, n1 and n4 do
not. Edges e2, e3 and e4 are inside the region, e1, e5 and e6

are outside. If an edge is inside the region, also its source and
target node must be inside the region (e.g., edge e2), but an
edge may be outside the region even if its source and target
are inside (e.g., edge e6).

Further, as regions can be nested, there are basic regions that
link a region to the elements of the workflow, and composite
regions that contain only other regions. We illustrate the
nesting of regions with the sample workflow shown in Fig. 6,
where some regions are depicted as rectangles. The innermost
rectangles are basic regions, all other rectangles are composite
regions.

Definition 5: A basic region is a tuple R = (NR, ER),
where NR is a subset of N (the set of nodes of the workflow)
and ER is a subset of E (the set of edges of the workflow),
with the restriction that the source and the target node of an
edge in ER must be in NR.

or

and and
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Fig. 6. A tree of well-defined regions

Definition 6: A composite region is a tuple R = (NR, ER),
where NR is a set of regions and ER is a set of edges between
regions, with the restrictions that (1) either R1 is contained in
R2 or R2 is contained in R1 or R1 = R2 if R1 and R2 both
contain the same workflow node n, and (2) the source and the
target region of an edge in ER must be in NR.

In the following we assume that the basic regions form a
partition of the workflow nodes, i.e., every workflow node is
contained in exactly one basic region. One possible partition
packs every workflow node n into a region Rn = (NRn

, ERn
)

with NRn
= {n} and ERn

= ∅. This special partition is called
the single-node basic partition. Another partition is shown in
Fig. 6, where each basic region contains exactly one control
node and each activity is either put into the region to its left
or to its right.

When building new composite regions first from basic
regions and later from other composite regions, there is always
a set of top-level regions not contained in another region.
These top-level regions also form a partition of the workflow
nodes because of restriction (1) in Definition 6.

Any partition into regions is a directed graph in which the
nodes are the regions and the edges are the edges between
these regions. Note, however, that this graph may not be an
ordinary directed graph because multiple edges may lead from
a region R1 to a region R2. As part of a directed graph, regions
have successors and predecessors, and we use the predicate
succ(R) for the set of all successor regions of region R and
the predicate pred(R) for the set of all predecessor regions of
region R.

The basic regions of the single-node basic partition in-
herit their behavior from the node they contain. The region
containing the start or end node have no incoming or no
outgoing edge, respectively. The regions containing activities
are SESE regions. The nodes containing control nodes have
either multiple outgoing or multiple incoming edges, and one
can assign an input and output logic to them. The output logic
of a single-node basic region containing an or- or and-split
is “or” or “and”, respectively. Similarly, the input logic of a
single-node basic region containing an or- or and-join is “or”
or “and”, respectively.

The concept of input and output logic can be extended to
other regions. If the workflow is not partitioned using the
single-node basic partition, the basic regions may not have a
well-defined input and/or output logic. A region, for example,
containing an or-split with one outgoing edge leading to an
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and-split as depicted in Fig. 7 has no unique output logic. The
two control nodes in 7a can be put into a region as in 7b, but
the four outgoing edges of this region do not have a behavior
that can be described with “or” or “and”.

Definition 7: The input logic and output logic of a region
is called well-defined in the following cases:

1) The input logic of a region is “or” if and only if the
region eventually enables one or all of its outgoing edges
(depending on the output logic) when any one of its
incoming edges is enabled.

2) The input logic of a region is “and” if and only if the
region eventually enables one or all of its outgoing edges
(depending on the output logic) when all of its incoming
edges are enabled.

3) The output logic of a region is “or” if and only if
the region eventually enables one and only one of its
outgoing edges when one or all of its incoming edges
(as required by the input logic) are enabled.

4) The output logic of a region is “and” if and only if the
region eventually enables all of its outgoing edges when
one or all of its incoming edges (as required by the input
logic) are enabled.

The graphical notations for the input/output logic of a region
are shown in Fig. 8. In 8a, a SESE region is shown. The input
and output logic is “or” in 8b, “and” in 8c, and either unknown
or irrelevant but still well-defined in 8d. If a region has zero
or one incoming edge, the input logic can be interpreted as
“or” or “and”. Similarly, if a region has zero or one outgoing
edge, the output logic can be interpreted as “or” or “and”.

Definition 8: A region is called well-defined if it has a well-
defined input logic and a well-defined output logic.

The structural conflicts defined for acyclic workflows be-
come incompatible input/output logic for regions as shown in
Fig. 9. A region S with output logic “or” connected to a region
T with input logic “and” through two or more edges as in 9a
results in a deadlock, and a region S with output logic “and”
connected to a region T with input logic “or” through two or
more edges as in 9b corresponds to a lack of synchronization.

B. Region Tree

Starting with a partition into well-defined basic regions,
composite regions can be built by combining one or more

a) b)

S T S T

deadlock lack of
synchronization

Fig. 9. Structural conflicts between regions

regions into a new region that is also well-defined. If we
continue in this way, we may finally reach the point where
only a single region is left. The resulting structure is called a
region tree (RT), similar to the program structure tree (PST)
in [11], with the remaining single region as its root.

Definition 9: A region tree (RT) of a workflow is a tree
of regions where (1) all nodes are well-defined regions, (2)
the leaf nodes are basic regions forming a partition of the
workflow nodes, (3) all other nodes are composite regions,
and (4) the root is a region.

For a single workflow, many different RTs can be con-
structed. Depending on how the RT is created, it reveals
more or less of the structure of the workflow. Fig. 6 shows
one possible RT for a sample workflow. The basic regions
are well-defined because they contain activities and only a
single control node. The composite regions are also well-
defined because they are SESE regions, although composite
regions may have a more complex input and/or output logic. In
Section IV, we define rules that create well-defined composite
regions from a set of well-defined input regions, and in
Section V, we discuss different strategies for applying these
rules.

IV. REGION-GROWING RULES

Three generic region-growing rules are introduced that
allow new well-defined regions to be built from existing well-
defined regions.

A. Well-defined Rules

Transformation rules have a left-hand side specifying the
pattern expected by the rule and a right-hand side that shows
the result of the application of the rule if the pattern matches.
The left-hand side of such a region-growing rule is a set of
regions assumed to be well-defined, and the right-hand side
is a single new region. We call a region-growing rule well-
defined if the resulting new region is well-defined whenever
the input regions on the left-hand side are well-defined. Fig. 10
shows an example of a rule that is not well-defined. The new
region cannot have “and” input logic because it would emit a
token on its upper output edge after consuming two tokens on
its upper two input edges instead of waiting for tokens on all
four input edges. It also cannot have “or” input logic because
it requires at least two tokens in order to emit a token instead
of one.

Any well-defined region-growing rule can be applied in
different ways, depending on the purpose intended. The three
applications in Fig. 11 will be used in the following as
appropriate. A rule can ignore the content of the regions as
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Fig. 11. Possible applications of well-defined region-growing rules

in 11a because all information required for the application of
further rules is stored in the interfaces (i.e., the input/output
logic). Used this way, a rule becomes a reduction rule. If
the content of the regions is needed and the rules acts as
a transformation rule, all intermediate regions created by
previous applications of rules may be kept, as in 11b, or some
of the regions introduced by other rules may be dissolved, as
region T is in 11c.

In the following, we present the three generic rules shown in
Fig. 12 and their well-defined subrules. The simplest generic
rule is depicted in 12a and covers the cycles in a workflow.
The generic rule with the most subrules is the one for two
neighbors, shown in 12b, because different subrules are needed
for the possible input and output logics of regions S and
T and depending on the successors of S or predecessors of
T , respectively. The overlapped patterns are handled by the
generic rule shown in 12c.

These generic region-growing rules are only based on the
reduction rules in [4][5] to a limited extent. Their more impor-
tant root is compiler theory [14], with the T1-T2 analysis [15]
to be mentioned explicitly, the area of goto-elimination [16]
and subsequent work on cycle-removal transformations for
sequential workflows [17]. Although the T1-T2 analysis was
invented as a method to determine irreducibility [14], it turned
out that reducibility for cycle-removal is far less important
than it seemed [18]. The generic rules for self-cycles and

S S

a)

S
T

S
T

b)

S1 T1

Sn Tm

... ...

S1 T1

Sn Tm

... ...

c)

Fig. 12. The three generic region-growing rules
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Fig. 13. Rules for self-loops

two neighbors correspond to the T1 and T2 rule from T1-
T2 analysis, respectively, extended to handle irreducibility and
parallelism [18].

For the graphically represented rules (such as the one shown
in Fig. 12), we use the following conventions: a single edge
represents exactly one edge, whereas two edges mean one or
more edges. In order to handle the region containing the start
or the end node, a variant of one rule in which regions are
allowed to have zero incoming or outgoing edges is needed.

B. Rules for self-loops

The set of rules for handling self-loops (i.e., edges where
the source and the target are the same region) is shown in
Fig. 13. Rule L in 13a is the only rule in this set that is not
an error. Rule ELoa in 13b, ELao in 13c and ELaa in 13d
correspond to the three structural conflicts in Fig. 4. In the
case of a self-loop, compatibility means that region S has an
input logic that is the same as its output logic. Therefore, the
situation 13b corresponds to deadlock as in Fig. 4a and the
situation 13c to lack of synchronization as in Fig. 4b. Although
the input/output logic of region S is compatible, the situation
in 13d is also a deadlock, however it is only possible in cyclic
workflows. It is called parallel cycle and is shown in Fig. 4c.

C. Rules for two neighbors

Two regions S and T with one or more edges leading from
S to T build the pattern for the rules for two neighbors.
Depending on whether region S has successors other than T
and region T has predecessors other than S, this group is split
into four sets of subrules.

The first set of subrules in this group is shown in Fig. 14.
It covers the cases where region S is the only predecessor
of region T and region T is the only successor of region S:
{S} = pred(T ) and {T} = succ(S). Rule S in 14a takes
two SESE regions and creates one SESE region containing
them. Although it is actually a special case of rule Cst in 14b
and rule Pst in 14c, we consider it important enough to get
its own rule-name such that it can be assigned an independent
priority in the transformation algorithm. To resolve the regions
containing the start or the end node, region S may have
no incoming and/or region T no outgoing edge in rule S,
although we assume that this special rule for resolving start
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Fig. 14. Rules for two neighbors with {S} = pred(T ), {T} = succ(S)
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Fig. 15. Rules for two neighbors with {S} ⊂ pred(T ), {T} = succ(S)

and end nodes is only applied as one of the very last steps. To
enumerate the possible structural conflicts, we created special
error rules as we did for the rules for self-cycles. Rule Estoa

in 14d corresponds to a deadlock and rule Estao in 14e to a
lack of synchronization.

The second set of subrules in this group is shown in Fig. 15.
It covers the cases where region T is the only successor of
region S but has predecessors other than S: {S} ⊂ pred(T )
and {T} = succ(S). Rule Cs in 15a and rule Ps in 15b
correspond to the two possible cases where the output logic
of S and the input logic of T are consistent with each other.
Also for this situation, we defined special error rules. Rule
Esoa, shown in 15c, corresponds to a deadlock and rule Esao,
shown in 15d, to a lack of synchronization.

The third set of subrules in this group is shown in Fig. 16.
It covers the cases where region S is the only predecessor of
region T but has successors other than T : {S} = pred(T )
and {T} ⊂ succ(S). Rule Ct in 16a and rule Pt in 16b
correspond to the two possible cases where the output logic
of S and the input logic of T are consistent with each other.
Again, we defined special error rules. Rule Etoa, shown in 16c,
corresponds to a deadlock and rule Etao, shown in 16d, to a
lack of synchronization.

The fourth and final set of subrules in this group is shown
in Fig. 17. It covers the cases where region S has successors
other than T and region T has predecessors other than S:
{S} ⊂ pred(T ) and {T} ⊂ succ(S). Rule C in 17a and
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rule Ct

rule Pt
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Fig. 16. Rules for two neighbors with {S} = pred(T ), {T} ⊂ succ(S)
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Fig. 17. Rules for two neighbors with {S} ⊂ pred(T ), {T} ⊂ succ(S)

rule P in 17b correspond to the two possible cases where
the output logic of S and the input logic of T are consistent
with each other. The error rules for this situation are defined
as well. Rule Eoa in 17c corresponds to a deadlock and rule
Eao in 17d to a lack of synchronization. Note that these two
patterns are only errors if there are at least two edges leading
from S to T , because otherwise the output logic of S and the
input logic of T are compatible.

D. Rules for the overlapped patterns

The overlapped pattern is a situation where a group of n
regions Si is connected to a group of m regions Tj in such a
way that from each Si exactly one edge leads to each Tj .
The two corresponding region-growing rules are shown in
Fig. 18. Rule O in 18a is well-defined, and rule EO in 18b is
an error rule because it would require synchronized decision

S1 T1

Sn Tm

... ...

S1 T1

Sn Tm

... ...

a)

S1 T1

Sn Tm

... ...

S1 T1

Sn Tm

... ...

b)

rule O

rule EO

Fig. 18. Rules for overlapped patterns
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Fig. 19. Overlapped rule applied to counterexample in [6]

conditions in the regions Si to ensure that all executions of
a workflow containing this pattern (that is otherwise well-
defined) will terminate successfully. Overlapped patterns with
other input/output logic combinations for regions Si and Tj are
not possible or can be resolved by the rules for two neighbors.
(Note also that the two regions S1 and T1 in Fig. 18a match
the pattern for the rule Eao in Fig. 17d without the restriction
that there must be at least two edges leading from region S1

to T1.)
Fig. 19 demonstrates that the counterexample presented

in [6] can be resolved using rule O. This workflow is basically
a pattern of four overlapped patterns arranged in a square in
such a way that they in turn also form an overlapped pattern
when resolved with rule O.

The problem of the original reduction rule for the over-
lapped pattern in [4] is (1) that the pattern to the left side
of the rule to be matched also includes the sources of all
the edges leading to the regions Si as well as the targets of
all the edges leaving the regions Tj , and (2) that all these
sources and targets were assumed to be a single region. In the
counterexample, regions T6 and T7, for example, do not have
the same predecessor, and regions C2 and C3, for example, do
not have the same successors. This assumption is not necessary
as the counterexample shows.

Because synchronized conditions are not allowed, only the
overlapped pattern where all regions have “and” output logic is
possible. If we allowed synchronized conditions (by redefining
what “well-behaved” means) and thus turned rule EO from an
error into an ordinary rule, this additional rule would not be
sufficient to resolve all possible workflows that would become
well-behaved under the new definition, as can be demonstrated
with the example pattern in Fig. 20.

A well-defined region as defined in this paper can only have
m-out-of-n logic with either m = 1 (“or” logic) or m = n
(“and” logic), but the example in Fig. 20 would require a
2-out-of-3 logic, because whenever one of the regions Q1,
Q2, Q3 receives a token, two of the three regions S1, S2, S3

eventually get a token. The selection of the outgoing edges of
these regions must be synchronized to avoid a deadlock. If,
for example, Q1 gets the initial token, it sends a token to R1

Q1 R1

Q3 R3

Q2 R2

S1 T1

S3 T3

S2 T2

Fig. 20. Overlapped patterns with synchronized conditions

A
B

C

a)

A
B

C

b)

A B
C

c)

Fig. 21. Pseudo-cycle introduced by rule C

and R2, and these two regions pass the token on to regions
S1 and S2. In order to enable one of the three regions T1, T2

and T3 and to make sure that the workflow does not get stuck
in a deadlock at this point, the two regions S1 and S2 must
“know” which other region got the second token so that both
can decide to send their token to T3, in this case.

V. APPLICATION OF THE RULES

Some issues related to the application of the rules are
discussed, and the rules are applied to find region trees for
a workflow.

A. Pseudo-cycles

As none of the rules is supposed to introduce a cycle, any
acyclic workflow should remain acyclic. As demonstrated in
Fig. 21, it is, however, possible to turn an acyclic workflow
into one that seems to be cyclic if the rules for two neighbors
are applied without care. Rule C with region A as source
and region C as target in 21a leads to the situation in 21b,
and rule Ct applied to the resulting new region as source and
region B as target creates a new region with a self-cycle. We
call such artificially introduced cycles pseudo-cycles. They
are not as dramatic as they may seem to be because (1)
the problematic rules are not needed to resolve acyclic or
reducible workflows, and (2) cycles and pseudo-cycles can
no longer be distinguished in highly cyclic (i.e., irreducible)
workflows [18].

Lemma 2: Well-formed acyclic sequential workflows can
be completely reduced using rules Cst and Ct, and well-
formed acyclic parallel workflows can be completely reduced
using rules Pst and Pt.

Proof: The leftmost split-node on a path from the start
to the end node with maximal length can always be resolved
together with a neighbor to the right.

Using a similar argument, it can be shown that every well-
formed acyclic sequential or parallel workflow can be reduced
with rules Cst and Cs or Pst and Ps, respectively, without the
need for further rules.
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Lemma 3: Rules Cs, Ps, Ct, Pt and the corresponding error
rules cannot introduce pseudo-cycles into an acyclic workflow.

Proof: The edges of a directed acyclic graph form a
partial order relation on the nodes m ≺ n (there exists a path
from m to n). These rules handle regions S and T with S ≺ T ,
but only if no region R exists with S ≺ R ≺ T .

B. Application Strategy

So far, we have only presented the region-growing rules but
not specified how they are supposed to play together to build
an RT for a workflow. In the following, we assume that the
workflow is partitioned through an initialization step into basic
regions. This partition can be the single-node basic partition,
a partition into basic regions containing exactly one control
node as shown in Fig. 6, or any other partition into well-
defined regions.

Starting from an initial partition any algorithm based on
these rules will eventually terminate independently of the
application order of the rules, because the number of regions
and/or edges seen at the top-level is reduced by every appli-
cation of a rule. When such an algorithm terminates, more
than one single region may be left. A workflow containing
the pattern in Fig. 20, for example, will not lead to a single
region. If it is crucial that the algorithm always returns
an RT, i.e., one single region at the top-level, an artificial
region (marked erroneous) can be introduced that contains all
remaining regions as children.

The rules are not confluent because already the rules for
sequential workflows are not confluent, and different priorities
for the rules have different side-effects, but lead all to correct
and “equivalent” results [18]. As a reasonable strategy, we will
(1) give rules S, L and O higher priority than the rules for
two neighbors, and (2) always make sure that the simpler rules
for two neighbors have higher priority than the more complex
ones6. Because of pseudo-cycles, rule P will not be used.

Structural conflicts can be detected in two ways. Either the
explicit error rules (such as ELoa) are used and the resulting
new regions are marked erroneous, or these rules are not
used and the algorithm terminates whenever it cannot find a
further rule that is applicable. In the second case, only a single
structural error is detected.

The algorithm outlined as pseudo-code in Fig. 22 shows
an implementation that gives rules Cs and Ps lower priority
than rules Ct and Pt and uses explicit error rules. The input
is assumed to contain the set of basic regions created by the
initialization step, and the output of the algorithm is the set of
remaining regions. Inside the do-until loop (i.e., repeat-loop),
the variable regions contains the top-level regions at the current
point of the transformation. The algorithm tries to apply one of
the rules in ruleSet[1]. If no matching set of regions is found
(indicated by an empty match), the algorithm tries to apply one
of the rules in ruleSet[2] and so on. If a matching set of regions
is found (indicated by a non-empty match), the respective rule

6Rules Cs, Ct, Ps and Pt are of equal complexity and can be given the
same priority. The only reason for assigning a lower priority to Cs than to
Ct is the setting of conditions in or-splits [18].

regions← input
ruleSet[1]← {S,L,O}
ruleSet[2]← {Cst, Pst}
ruleSet[3]← {ELoa, ELao, ELaa, Estoa, Estao, EO}
ruleSet[4]← {Ct, Pt}
ruleSet[5]← {Etoa, Etao}
ruleSet[6]← {Cs, Ps}
ruleSet[7]← {Esoa, Esao}
ruleSet[8]← {C}
ruleSet[9]← {Eoa, Eao}
repeat

applied← false
for level← 1 to 9 while ¬applied do

for all rule ∈ ruleSet[level] while ¬applied do
match← findMatch(rule, regions)
if | match |≥ 1 then

newRegion← rule.apply(match)
regions← regions \match
regions← regions ∪ {newRegion}
applied← true

end if
end for

end for
until ¬applied
output← regions

Fig. 22. Algorithm in pseudo-code

is applied, creates and returns a new region newRegion, the
matching regions are removed from regions, the new region is
added to regions, and the boolean variable applied is set to true
to ensure that the next round starts again with ruleSet[1]. If
the new region has been created by one of the error rules, the
region is marked as erroneous. In this algorithm, the handling
of the regions containing start and end nodes has been left out,
and it can therefore be used to transform not only complete
workflows but also SESE regions7.

VI. COMBINED ANALYSIS AND TRANSFORMATION

The combination of the analysis of workflows for structural
conflicts and their transformation into a more structured form
is demonstrated on the example workflow from Fig. 6.

A. Analysis for Structural Conflicts

The example workflow and its initial regions are shown in
Fig. 23. Even with the non-trivial SESE regions highlighted
in 23a as dotted rectangles, it is not obvious that it contains
a deadlock. The basic regions from the initialization in 23b
have been given names, and the regions are annotated with
the names of the activities they contain.

Fig. 24 shows the transformation steps until the deadlock
becomes visible. Rule Cst is applied to regions R3 and R4

to get to the state in 24a with region R3+4, to which rule L
can be applied as shown in 24b. The situation in 24c results

7Note that all SESE regions can be determined (e.g., using the algorithm
in [11]), and the region-growing rules can be applied to these regions.
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Fig. 23. Sample workflow with deadlock

from the application of rule Ct to regions R5 and R6. The
new region can be combined with region R7 using rule Ct

again as shown in 24d and with region R8 using rule Cst as
shown in 24e. Next, rule Ct combines regions R2 and R3+4,
leading to the state in 24f.

At this point, either rule Pt can be applied to region R1 and
the composite region R5+6+7+8, or rule Ps can be applied to
regions R9 and R10. (Note, however, that the two regions R1

and R2+3+4 have incompatible output logic such that rule Pt

cannot be applied to these two regions.) As the sequence in
which the rules are applied in this situation has no significant
influence on the result, we apply rule Ps first and get the state
shown in 24g, in which the deadlock between regions R2+3+4

and R9+10 becomes visible.
We consider the correction of such problems a step that

has to be performed manually by the designer, although
the algorithm that detected the conflict may come up with
suggestions8. These hints can indicate which steps could lead
to a structurally correct workflow, but only the designer can
determine which solution is the right one given what the
workflow is supposed to do. In this example, the problem can
be resolved by changing either the or-split after activity C
into an and-split or all three and-splits in the workflow into
or-splits. We assume that here the correct choice is turning the
or-split after activity C into an and-split.

The corrected version of the workflow is shown in Fig. 25.
The workflow in 25a is now separable (and therefore well-
behaved) as the three non-trivial SESE regions show. It con-
sists of two sequential SESE region (one cyclic, one acyclic),
both contained in a parallel SESE region. Because of the
correction, region R2 gets an output logic “and” in 25b. The
change is local, and only the affected regions have to be
transformed again, i.e., region R2 must be regenerated and
the application of rule Ct combining the basic region R2 and
the composite region R3+4 needs to be re-examined.

Resuming the transformation from here allows the few
remaining steps to be completed as shown in Fig. 26. The

8The number of changes needed to fix the problem in the workflow belongs
to the criteria on which such suggestions could be based.
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Fig. 24. Rules applied to the sample workflow with deadlock

composite region R3+4 in 26a can be merged with its prede-
cessor R2, leading to the four remaining regions shown in 26b.
At this point, rule Pt can merge the two composite regions in
the middle into region R1, or rule Ps can merge the same
regions into region R9+10. The application sequence for the
rules has no significant impact in this case, and we just select
one possible sequence. Rule Pt, for example, merging regions
R1 and R2+3+4, leads to the situation shown in 26c, and,
applied again to merge regions R1+2+3+4 and R5+6+7+8, to
the situation shown in 26d. A final application of rule Pst

results in the single region shown in 26e.

For space reasons, the content of the composite regions (i.e.,
the regions contained in other regions) is not shown in Figs. 24
and 26. As an example of how the internals of such a region
would look like, the nested containment is depicted in Fig. 27
for region R3+4 after the application of rule L. It visualizes a
part of the RT. The complete RT for the corrected workflow
is presented in Fig. 28 in compact form.
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Fig. 26. Rules applied to the corrected sample workflow

B. Transformation into Structured Form

A separable workflow consists of nested SESE regions that
are either sequential or parallel. The sequential regions can
always be transformed into an equivalent9 structured form [13]
and further to the structured BPEL activities switch and
while. Although not all parallel regions can be turned
into an equivalent structured form [13], they can be directly
transformed into BPEL flow activities plus link constructs.
Thus, the compilation of separable workflows into BPEL is
possible.

Workflows that are not separable must contain SESE regions
with sequential as well as parallel control nodes. With the
region-growing rules, such regions can only occur through rule
O or one of the error rules. The input pattern of rule O, i.e.,
the overlap pattern, can be turned into an equivalent structured
form by duplicating the activities between the or-joins and
the and-join and then switching these join nodes [12]. The
error rules correspond to structural errors that cannot occur

9For a definition of equivalence, see [13].
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Fig. 27. Detailed content of region R3+4 resulting from rule L
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Fig. 28. Region tree for the corrected sample workflow

in well-behaved workflows. Thus, all well-behaved workflows
that can be handled by the region-growing rules introduced in
this paper can be converted into an equivalent form that can
be represented in BPEL.

To demonstrate the compilation to BPEL in more detail, we
examine one region more closely and apply the transformation
rules discussed in [18]. Applying these rules blindly to the part
of the RT containing region R3+4 created by rule L, i.e., the
part of the RT shown in Fig. 27, leads to the following BPEL
skeleton code:

<while condition>
<invoke D />
<invoke E />
<switch>

<case condition>
<invoke F />

</case>
</switch>

</while>

Parameters for the invoke activities and conditions for the
while and switch activities have not been set, but it is
assumed here that they could be derived from the original
workflow. Because the cycle would be better represented by
a do-until than by a do-while loop, the condition of the loop
must also guarantee that activities D and E are invoked at
least once.

As described in [18], rules Ct and Cs tend to move nodes
(such as activity F in this example) from the right and
from the left, respectively, into the cycles, although these
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nodes would better stay outside. Because the area of the
workflow contributing to a cycle is well-known (see Fig. 27),
an optimization step can identify these nodes and move them
out of the loop:

<while condition>
<invoke D />
<invoke E />

</while>
<invoke F />

VII. CONCLUSION

In this paper, we introduced the region tree of a workflow
and some transformation rules that allow the region tree to be
built in an incremental and iterative way. Three generic rules
can be distinguished: one for self-loops, one for processing
two neighbors, and one for the overlapped pattern. The regions
detected by the rules and the interfaces between them (as
defined through the input/output logic of a region) reveal
structural information about the workflow that is useful for
further applications. We combined two such applications to
demonstrate the power of the region tree.

The first area in which we used this structural information is
the detection of structural conflicts in workflows. These rules
not only detect but also localize the structural conflicts called
deadlock, lack of synchronization, and parallel cycles. They
can handle cyclic workflows and workflows containing the
overlapped pattern, but so far they cannot handle workflows
that would require synchronized conditions.

The second possible application area explored in this paper
is the transformation (or compilation) of unstructured or
insufficiently structured workflows into a more structured form
as expected by some runtime platforms. If, for example, the
workflow is supposed to be deployed on a workflow engine
that is based on BPEL, cycles are only allowed in the form of
a do-while loop, and unstructured cyclic workflows therefore
have to be transformed into this form first.

This paper concentrated on the demonstration of the concept
of the region tree. Future work includes the application of the
region tree in other areas, and the definition of additional rules
and concepts needed to handle all well-formed workflows even
if they require synchronized conditions and general forms of
m-out-of-n logic.
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