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Transformation of Workflows Using Region Trees
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Abstract—The analysis of workflows in terms of structural cor-
rectness is important for ensuring the quality of workflow models.
Typically, this analysis is only one step in a larger development pro-
cess, followed by further transformation steps that lead from high-
level models to more refined models until the workflow can finally
be deployed on the underlying workflow engine of the production
system. For practical and scalable applications, both analysis and
transformation of workflows must be integrated to allow incre-
mental changes of larger workflows. In this paper, we introduce
the concept of a region tree (RT) for workflow models that can be
used as the central data structure for both workflow analysis and
workflow transformation. An RT is similar to a program structure
tree and imposes a hierarchy of regions as an overlay structure
onto the workflow model. It allows an incremental approach to
the analysis and transformation of workflows, and thereby, sig-
nificantly reduces the overhead because individual regions can be
dealt with separately. The RT is built using a set of region-growing
rules. The set of rules presented here is shown to be correct and
complete in the sense that a workflow is region-reducible as defined
through these rules if and only if it is semantically sound.

Index Terms—Business process modeling, control flow, workflow
modeling, workflow transformation, workflow verification.

I. INTRODUCTION

GRAPHICAL notations for workflow models or business
process models, in the following called workflows, have

been used for a long time to describe behaviors in terms of
a control flow between activities and their temporal relations.
Workflows are, therefore, a relatively advanced area in which
model-driven architecture (MDA) [1] or, in a broader sense,
model-driven engineering (MDE) [2] concepts and methods
have been applied. The development of an application based
on graphical models is a complicated process, leading in par-
tially manual and partially automated steps from analysis mod-
els via design models to a complete and deployable information
technology (IT) solution [3]. To support this development cy-
cle including the deployment: 1) modeling tools are necessary
for sketching and refining workflows; 2) support is required for
validation, verification, optimization, and testing of workflows;
and 3) algorithms are needed for transforming a workflow into
the elements and structure required by the underlying workflow
or execution engine, in the following called runtime platform.

Two main groups of graphical notations for workflows are
used. Petri nets [4], specifically free-choice Petri nets [5],
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have been proposed to model and analyze workflows scien-
tifically [6]. However, the major software products and industry
standards including the Unified Modeling Language 2 (UML2)
Activity Diagrams [7] are based on simpler, often only infor-
mally defined process modeling languages inspired by general-
purpose drawing tools and preferred by mathematically less
thoroughly trained business analysts. The translation of results
described in terms of Petri nets into the theory of these other
process modeling languages is not always straightforward.

The challenge of validation, verification, and testing is not
only to discover errors and unexpected behaviors as early as pos-
sible, but also not to restrict the designer by imposing unneces-
sary overhead. Structural conflicts, most importantly, deadlocks,
as one source of errors in a workflow can be detected by var-
ious methods. Graph reduction rules similar to the reduction
rules for Petri nets in [4] and [5] were introduced in [8] for pro-
cess modeling languages to detect structural conflicts in acyclic
workflows. One of these graph-reduction rules, the so-called
overlapped reduction rule defined for an infrequently occurring
pattern, turned out to be insufficient as demonstrated on a sample
workflow, and hence, was replaced in [9] by three other, albeit
very complicated rules. In [10], another valid workflow was pre-
sented in which the original rules fail, and a case was made for
using Petri nets to detect structural conflicts because they out-
perform the reduction algorithms operating on process models
and can also handle cyclic workflows. Despite this, a rule-based
reduction approach for process modeling languages is not in-
trinsically limited to acyclic workflows, and a carefully chosen
set of rules does not only detect, but, as will be shown later, also
localize errors and helps understand the structure of workflows.

In a model-driven approach to workflow modeling, workflow
analysis for structural conflicts is not a one-time activity, but is
performed repeatedly on different (or even the same) parts of a
larger workflow model during refinement, as discussed in [3].
One important transformation used in this process is the de-
ployment step, which transforms the workflow into the form re-
quired by, and possibly optimized for, the runtime platform. This
transformation can be quite complex, because graphical process
modeling languages for workflows such as UML2 Activity Dia-
grams [7] and the related notation used by the IBM WebSphere
Business Modeler (Modeler) [11] permit the specification of
models that are less structured than are allowed by some run-
time platforms such as the workflow engines for the Business
Process Execution Language for Web Services (BPEL) [12]. In
BPEL, unstructured cycles, for example, must be converted to
structured do-while loops. Thus, if the target runtime platform
is based on BPEL, the unstructured parts of the workflow that
cannot be represented in BPEL must be resolved into structured
constructs [13].

1094-6977/$25.00 © 2008 IEEE
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To enable workflow analysis and workflow transformation for
an incremental and iterative approach, we introduce the concept
of a region tree (RT). Similar to the program structure tree (PST)
[14], the RT imposes a hierarchical structure on the workflow
model. Individual regions can then be analyzed separately, and
one region can be transformed and refined without affecting
other parts. The RT can be built using rules that adapt and extend
the reductions rules for detecting structural conflicts described
in [8] and [9]. These rules, called region-growing rules, are
used to construct a hierarchy of regions as an overlay structure
in which structural conflicts become visible at the interfaces
between interacting regions. The resulting tree of regions can
be used to optimize workflows and to transform unstructured or
partially structured workflows into equivalent, more structured
versions of the workflow. Unlike a PST, the RT may contain not
only the special type of regions called single entry single-exit
(SESE) [14], but also more general regions.

Contrary to the reduction rules in [4], [5], and [8], the trans-
formation building the RT does not change the workflow, and
thus, does not remove information. By ignoring the content of
the regions, it can still be used as a reduction procedure, and the
region-growing rules used in this way lead to the concept of re-
gion reducibility. It turns out that semantical soundness defined
through behavioral properties of workflows is equivalent to re-
gion reducibility. In other words, a workflow is region-reducible
if and only if it is semantically sound.

This paper, based on the conference paper [15] extended with
the main theorems proving the equivalence of semantical sound-
ness and region reducibility, is organized as follows. Section II
introduces the basic workflow concepts. In Sections III and IV,
the RT and the region-growing rules for workflows are pre-
sented. The application of the RT to combine workflow analysis
and transformation is illustrated with an example in Section V.
In Section VI, we prove that the set of region-growing rules
is correct and complete. Finally, the paper concludes with a
summary in Section VII.

II. BASIC CONCEPTS

Here, the definition of a workflow is introduced, and structural
conflicts as a class of errors are discussed.

A. Workflows and Soundness

Various graphical notations for modeling workflows as pro-
cess graphs exist, but they are all based on the concept of directed
graphs. We use the definition of workflows and the graphical
representation for their elements, as shown in Fig. 1, similar to
the notation in [16], but not limited to only two edges. The start
node, the end node, and the activity1 are shown in Fig. 1(a), (b),
and (c), respectively. The sequential control nodes, choice, and
merge, in Fig. 1(d) and (e) are also called or-split and or-join.2

The parallel control nodes, fork, and join, in Fig. 1(f) and (g) are
also called and-split and and-join. These nodes can be connected

1Note that the start and end nodes are sometimes considered activities and
sometimes no-op elements, although the distinction is not relevant here.

2The term “or” is slightly misleading, and the term “xor” is sometimes used
instead because one and only one edge is assumed to be enabled.

Fig. 1. Workflow graph elements.

through edges, and a directed graph built with these elements
is called a workflow. In the following, we assume that all work-
flows are structurally sound [17], i.e., they contain exactly one
start and one end node, and there is a path from the start node
to every node and a path from every node to the end node.

We introduce the semantics, i.e., the behavior, of a structurally
sound workflow in terms of Petri-net-like tokens. The start node
emits a token on its outgoing edge when the workflow is started.
An activity starts when a token arrives on its incoming edge,
i.e., when the incoming edge is enabled, and eventually ends by
sending a token to its outgoing edge. The end node consumes a
token on its incoming edge and terminates the workflow. The or-
split emits a token on one of its outgoing edges after consuming
a token on its incoming edge. The or-join emits a token on its
outgoing edge after consuming a token on one of its incoming
edges, and thus, behaves according to the “multiple executions"
semantics defined in [16]. The and-split consumes a token on
its incoming edge and emits a token on all outgoing edges. The
and-join emits a token on its outgoing edge after consuming a
token on all incoming edges.

Several concepts of semantical soundness of workflows ex-
ist. In addition to the original definition introduced for workflow
nets in [6], relaxed, weak, and lazy soundness have been pro-
posed depending on the workflow patterns in [18] to be modeled
and on workflow properties such as what happens to running ac-
tivities when the workflow terminates after the end node received
a token [17]. We use the initial definition adapted from workflow
nets and define semantical soundness as follows: executions of
a workflow are described through the flow of the tokens. An
execution terminates as soon as the end node consumes a token.
It terminates successfully if, at this point, no other tokens are
present in the workflow.

Definition 1: A structurally sound workflow is semanti-
cally sound if and only if all possible executions terminate
successfully.

To avoid unreachable nodes in general and infinite loops in
particular, we assume further that every or-split will enable each
of its outgoing edges eventually if reached often enough in the
same or in different executions.

B. Structural Conflicts

Not all structurally sound workflows are semantically sound.
Fig. 2 shows prototypical examples of structural conflicts. The
first two were identified in [8], [16], and [19], where the situation
in Fig. 2(a) is called deadlock and the one in Fig. 2(b) is called
either lack of synchronization or multiple active instances of the
same activity. The third structural conflict shown in Fig. 2(c)
can only occur in cyclic workflows. We call it parallel cycle.

The and-join of the deadlock never emits a token if the
or-split only gets a single token. The or-join of the lack of
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Fig. 2. Structural conflicts.

synchronization always receives at least two tokens, and, de-
pending on the semantics of the or-join [16], either discards
all but one token or emits one token for each token received.3

These two structural conflicts may not necessarily be considered
an error when using more relaxed definitions of soundness, but
certainly need careful inspection.

In general, deadlock is a situation in which an and-join gets
some but not all tokens, and lack of synchronization is a situation
in which an or-join gets too many tokens on its incoming edges.
The parallel cycle is also a kind of deadlock: it occurs if the
nodes on the path from the and-split back to the and-join can
only get a token through the path from the and-join to the and-
split. The and-join will never emit a token.

III. REGION ANALYSIS

Here, relevant concepts regarding workflow regions in general
and the RT in particular are introduced.

A. Single-Entry Single-Exit Regions

An important type of region is the SESE region known from
compiler theory [14]. Informally speaking, an SESE region is
a set of nodes that does not contain the start and/or end node,
such that there is exactly one edge, called the incoming edge,
leading from nodes not in the region to nodes in the region, and
exactly one edge, called the outgoing edge, leading from nodes
in the region to nodes not in the region. The set of all nodes of
a structurally sound workflow other than the start and end node
build an SESE region, with the edge leaving the start node as
the incoming edge and the edge going to the end node as the
outgoing edge. In the following, the terms workflow and SESE
region will, therefore, often be used interchangeably, and most
figures will only show the SESE region instead of the workflow
with start and end node. Consequently, we call an SESE region
semantically sound if and only if the corresponding workflow
with start and end node is semantically sound.

Different levels of syntactical structuredness can be defined
using the concept of substitution, i.e., of replacing an edge e
in a workflow w1 with a structurally sound workflow w2 . As
depicted in Fig. 3, edge e is removed from w1 , the start and end
node are removed from w2 , and the remaining parts of w2 are
plugged into w1 such that the original source of e becomes the
new source of the edge leaving the original start node of w2 and
the original target of e becomes the new target of the edge going
to the original end node of w2 . A part of workflow w1 with edge
e is shown in Fig. 3(a), workflow w2 is depicted in Fig. 3(b),
and the result is presented in Fig. 3(c).

3As the or-join allows different behaviors, the term lack of synchronization is
more appropriate than multiple instances of the same activity.

Fig. 3. Substitution of workflow w2 for edge e in workflow w1 .

The simplest level, apart from linear workflows, i.e., work-
flows with a single path from start to end node, is called struc-
tured in [19] and consists of those workflows in which each or-
or and-split has one corresponding or- or and-join, respectively.

Definition 2: A workflow is structured if and only if it can be
constructed using the following inductive rules.

1) All structurally sound linear workflows, i.e., workflows
without control nodes, are structured.

2) All structurally sound workflows with one or-split and one
or-join as the only control nodes are structured.

3) All structurally sound acyclic workflows with one and-
split and one and-join as the only control nodes are
structured.

4) If w1 and w2 are structured workflows and w1 contains an
edge e, the result of replacing e with w2 in w1 is structured.

If the sequential parts of a workflow, i.e., those parts only
using or-splits and -joins, can be separated from the parallel
parts, i.e., those parts only using and-splits and -joins, we call
the workflow separable.

Definition 3: A workflow is separable if and only if it can be
constructed using the following inductive rules.

1) All structurally sound workflows with only or-splits and
or-joins as control nodes are separable.

2) All structurally sound acyclic workflows with only and-
splits and and-joins as control nodes are separable.

3) If w1 and w2 are separable workflows and w1 contains an
edge e, the result of replacing e with w2 in w1 is separable.

Clearly, all structured workflows are separable, but not all
separable workflows are structured. Separable workflows have
the following important property.

Lemma 1: All separable workflows are semantically sound.
Proof: We observe the token flow in one single SESE region

that is either sequential or parallel.
1) In an SESE region with only sequential control nodes,

all nodes (or other SESE regions) consume one token and
eventually emit one token. Thus, there is exactly one token
in the region between the time the token enters the region
and the time it leaves it.

2) In an acyclic SESE region with only parallel control nodes
and activities (or other SESE regions), one token passes
through every edge exactly once.

In both the cases, all executions terminate successfully. �
However, there are semantically sound workflows that are not

separable. Workflows containing so-called overlapped patterns,
as shown in Fig. 4, mix and-splits with or-joins or or-splits
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Fig. 4. Overlapped patterns.

with and-joins in such a way that executions of the workflow
can terminate successfully. The pattern in Fig. 4(a) made it
necessary to define a special rule [8]. All executions of this
workflow terminate successfully, and the pattern is semantically
sound. For the dual workflow, i.e., a workflow in which or-splits
and -joins are replaced with and-splits and -joins, and vice versa,
as in Fig. 4(b), executions can only terminate successfully if the
two or-splits both enable either the upper edge or the lower edge.
The pattern is, therefore, not semantically sound. If or-splits (one
or more) in a workflow need additional information to make
a workflow execute, their conditions are called synchronized.
Other examples in which or-splits need synchronization of their
conditions, e.g., to exit two parallel cycles at the same time, are
discussed in [19].

B. Well-Defined Input and Output Logic

When seen as a black box, an SESE region behaves with
respect to the flow of tokens in a similar way as does an activity.
If a token enters the region through the incoming edge, a token
will eventually come out on the outgoing edge. This approach
of describing the behavior of regions as black boxes through
their interfaces can be generalized by means of the definition
of the input/output logic of a region. Informally speaking, the
input logic is “or” if and only if a token on one of the incoming
edges triggers the region, and it is “and” if and only if a token on
all its incoming edges triggers the region. Similarly, the output
logic is “or” if and only if the region eventually emits a token on
one of its outgoing edges when triggered, and it is “and” if and
only if the region eventually emits a token on all its outgoing
edges when triggered. In this way, regions with an input/output
logic can also be treated as black boxes with respect to their
token-flow behavior, and the input/output logic determines the
two interfaces of a region.

If the behavior of the interfaces of a region can be described
in this way, we call the region and its interfaces well defined.

Fig. 5. Region graph elements with input/output logic.

Fig. 6. Structural conflicts between regions.

Fig. 7. Workflow with a partition into well-defined basic regions.

The graphical notations used in the following are presented in
Fig. 5. In Fig. 5(a), an SESE region is shown. The input and
output logic is “or” in Fig. 5(b), “and” in Fig. 5(c), and either
unknown or irrelevant but still well defined in Fig. 5(d). If a
region has one incoming edge, the input logic can be interpreted
as “or” or “and,” and if a region has one outgoing edge, the
output logic can be interpreted as “or” or “and.”

As illustrated in Fig. 6, the structural conflicts defined for
acyclic workflows become incompatible input and output logic
for regions. A region S with output logic “or” connected to a
region T with input logic “and” through two or more edges, as
in Fig. 6(a), results in a deadlock. A region S with output logic
“and” connected to a region T with input logic “or” through
two or more edges, as in Fig. 6(b), corresponds to a lack of
synchronization.

C. Region Tree

Starting with a partition into well-defined basic regions, we
can build composite regions by combining one or more regions
into a new region that is also well defined. If we continue in this
way, we may finally reach the point where only a single region
is left. The resulting structure is called an RT, similar to the PST
in [14], with the remaining single region as its root.

An initial partition in which each node of the workflow is
packed into its own region is a valid starting point. Alternatively,
also the initial partition in which each region contains only one
single control node, but may contain in addition an arbitrary
number of activities, as in Fig. 7, is valid.

For a single workflow, many different RTs can be constructed.
Depending on how the RT is created, it will reveal more or less
of the structure of the workflow. In the following section, we
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Fig. 8. Three families of region-growing rules.

define region-growing rules to build the composite regions in
such a way that we can detect structural errors.

IV. REGION-GROWING RULES

In this section, three families of region-growing rules will be
introduced that allow new well-defined regions to be built from
existing well-defined regions.

A. Families of Rules

Transformation rules have a left-hand side specifying the pat-
tern expected by the rule and a right-hand side showing the
result of the application of the rule if the pattern matches. The
left-hand side of such a region-growing rule is a set of regions
assumed to be well defined, and the right-hand side is a single
new region. We call a region-growing rule well defined if the
resulting new region is well defined whenever the input regions
on the left-hand side are well defined.

In the following, we present the three families of rules shown
in Fig. 8 with their member rules, but without the error rules
discussed in [15]. The simplest family of rules covers cycles,
as depicted in Fig. 8(a). The family of rules for two neighbors
shown in Fig. 8(b) contains different member rules for the pos-
sible input and output logics of regions S and T and depending
on the successors of S or predecessors of T . These two families
have a fixed number of input regions. The third family, shown
in Fig. 8(c), has a variable number of input regions. It covers
the overlapped patterns.

The first two families of region-growing rules are based but
only to a limited extent on the reduction rules in [8] and [9].
Their more important root is compiler theory [20], explicitly
the T1 − T2 analysis [21], the area of goto-elimination [22]
and subsequent work on cycle-removal transformations for se-
quential (and therefore separable) workflows [23]. Although
the T1 − T2 analysis was invented as a method for determining
irreducibility, it turned out that reducibility for cycle removal
is far less important than it seemed [24]. Note that these two
families of rules, i.e., the rules for self-loops and for two neigh-
bors, correspond to the T1 and T2 rule from T1 − T2 analysis,
respectively, extended to handle irreducibility and parallelism.

Fig. 9. Rules for self-loops.

Fig. 10. Rules for two neighbors with {S} = pred(T ), {T } = succ(S).

Fig. 11. Rules for two neighbors with {S} ⊂ pred(T ), {T } = succ(S).

For the rules represented graphically (such as the one shown
in Fig. 8), we use the following conventions: a single edge
represents exactly one edge, two edges with the same source
and/or target region mean one or more edges.

B. Rules for Self-Loops

The only rule for handling self-loops, i.e., edges in which
the source and target are the same region, is rule L shown in
Fig. 9. The other combinations of input/output logic for region
S correspond to the structural conflicts shown in Fig. 2.

C. Rules for Two Neighbors

Two regions S and T (S �= T ) with one or more edges leading
from S to T build the pattern for the rules for two neighbors.
Depending on whether region S has successors other than T
and region T has predecessors other than S, this group is split
into four sets of member rules.

The first set of member rules is shown in Fig. 10. It covers
the cases in which region S is the only predecessor of region T
and region T is the only successor of region S: {S} = pred(T )
and {T} = succ(S). The output logic of S and the input logic
of T must be compatible. Rule Cst with “or” logic is shown in
Fig. 10(c) and rule Pst with “and” logic in Fig. 10(b).

The second set of member rules is shown in Fig. 11. It cov-
ers the cases in which region T is the only successor of re-
gion S, but has predecessors other than S: {S} ⊂ pred(T ) and
{T} = succ(S). Rule Cs in Fig. 11(a) and rule Ps in Fig. 11(b)
correspond to the two possible cases in which the output logic
of S and the input logic of T are consistent with each other.

The third set of member rules is shown in Fig. 12. It cov-
ers the cases in which region S is the only predecessor of re-
gion T , but has successors other than T : {S} = pred(T ) and
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Fig. 12. Rules for two neighbors with {S} = pred(T ), {T } ⊂ succ(S).

Fig. 13. Rules for two neighbors with {S} ⊂ pred(T ), {T } ⊂ succ(S).

Fig. 14. Rules for overlapped patterns.

{T} ⊂ succ(S). Rule Ct in Fig. 12(a) and rule Pt in Fig. 12(b)
correspond to the two possible cases in which the output logic
of S and the input logic of T are consistent with each other.

The fourth and final set of member rules is shown in Fig. 13.
It covers the cases in which region S has successors other than T
and region T has predecessors other than S: {S} ⊂ pred(T ) and
{T} ⊂ succ(S). Rule C in Fig. 13(a) and rule P in Fig. 13(b)
correspond to the two possible cases in which the output logic
of S and the input logic of T are consistent with each other.

D. Rules for Overlapped Patterns

The overlapped pattern is a situation in which a group of n
regions Si (n ≥ 2) is connected to a group of m regions Tj

(m ≥ 2) in such a way that from every Si exactly one edge
leads to every Tj . The only member rule allowed in this family
is rule O shown in Fig. 14.

E. Region Reducibility

Depending on the goal, the region-growing rules can be ap-
plied differently. The effect of the application strategy as well
as its properties and pitfalls such as pseudocycles have been
discussed in [15]. Here, we concentrate on the set of workflows
that can be resolved by the region-growing rules if these rules
are used as reduction rules.

Definition 4: An SESE region is region reducible if it can be
reduced to a single region with one incoming and one outgoing
edge using the region-growing rules L, Cst , Cs , Ct , C, Pst ,
Ps , Pt , and O when starting from an initial partition into basic
regions with at most one control node per region.

Fig. 15. Sample workflow with deadlock.

Note that rule P is not used because it is not needed and would
in addition cause problems. Moreover, either rule Ps or rule Pt is
redundant too. Because structurally sound workflows and SESE
regions can be used interchangeably here, the concept of region
reducibility can be extended to workflows in a straightforward
way by removing their start and end node.

Termination and confluence are important properties of such
rule-based systems. The application of the region-growing rules
always terminates because each rule reduces the number of
edges and either keeps the number of nodes the same or also
reduces the number of nodes. Used as transformation rules, the
set of region-growing rules is not confluent, because if rule L has
highest priority on a cyclic sequential workflow, many cycles
may be detected, but if rule L has lowest priority, all cycles are
combined into one single cycle [24]. Used as reduction rules,
the set of region-growing rules is, however, confluent, as will be
shown later.

V. COMBINED ANALYSIS AND TRANSFORMATION

The combination of the analysis of workflows for structural
conflicts and their transformation into a more structured form is
demonstrated on the example workflow from Fig. 7.

A. Analysis for Structural Conflicts

The example workflow and its initial regions are shown in
Fig. 15. Even with the nontrivial SESE regions marked in
Fig. 15(a) by dotted rectangles, it is not obvious that it con-
tains a deadlock. The basic regions from the initialization in
Fig. 7 have been given names, and the regions are annotated
with the names of the activities they contain in Fig. 15(b).

Fig. 16 shows the transformation steps until the deadlock
becomes visible. Rule Cst is applied to regions R3 and R4 to
obtain the state shown in Fig. 16(a) with region R3+4 , to which
rule L can be applied, as shown in Fig. 16(b). The situation in
Fig. 16(c) results from the application of rule Ct to regions R5
and R6 . The new region can be combined with region R7 using
rule Ct again, as shown in Fig. 16(d) and with region R8 using
rule Cst , as shown in Fig. 16(e). Next, rule Ct combines regions
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Fig. 16. Rules applied to the sample workflow with deadlock.

R2 and R3+4 , leading to the state in Fig. 16(f). At this point,
either rule Pt can be applied to region R1 , and the composite
region R5+6+7+8 , or rule Ps can be applied to regions R9 and
R10 . (Note, however, that the two regions R1 and R2+3+4 have
incompatible output logic such that rule Pt cannot be applied
to these two regions.) As the sequence in which the rules are
applied in this situation has no significant influence on the result,
we apply rule Ps first and get the state shown in Fig. 16(g),
in which the deadlock between regions R2+3+4 and R9+10
becomes visible.

We consider the correction of such problems a manual step,
although the algorithm that detected the conflict may come up
with suggestions.4 These suggestions can indicate which steps
could lead to a structurally correct workflow, but only the de-

4The number of changes needed to fix the problem in the workflow is one of
the criteria on which such suggestions could be based.

Fig. 17. Corrected sample workflow.

Fig. 18. Rules applied to the corrected sample workflow.

signer can determine which solution is the right one given what
the workflow is supposed to do. In this example, the problem
can be resolved by changing either the or-split after activity
C into an and-split or all three and-splits in the workflow into
or-splits. We assume that here the correct choice is to turn the
or-split after activity C into an and-split.

The corrected version of the workflow is shown in Fig. 17.
The workflow in Fig. 17(a) is now separable (and therefore, se-
mantically sound according to Lemma 1), as shown by the three
nontrivial SESE regions. It consists of two sequential SESE re-
gion (one cyclic, one acyclic), both contained in a parallel SESE
region. Because of the correction, region R2 gets an output logic
“and” in Fig. 17(b). The change is local, and only the regions
affected have to be processed again, i.e., region R2 must be re-
generated and the application of rule Ct combining regions R2
and R3+4 needs to be reexamined.

Resuming the transformation from here allows the remaining
steps to be completed, as shown in Fig. 18. The composite
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Fig. 19. Detailed content of region R3+4 resulting from rule L.

Fig. 20. RT for the corrected sample workflow.

region R3+4 in Fig. 18(a) can be merged with its predecessor
R2 , leading to the four remaining regions shown in Fig. 18(b).
At this point, rule Pt can merge the two composite regions
in the middle into region R1 , or rule Ps can merge the same
regions into region R9+10 . The application sequence of the
rules has no significant impact in this case, and we just select
one possible sequence. Rule Pt , for example, merging regions
R1 and R2+3+4 , leads to the situation shown in Fig. 18(c), and,
applied again to merge regions R1+2+3+4 and R5+6+7+8 , to
the situation shown in Fig. 18(d). A final application of rule Pst
results in the single region shown in Fig. 18(e).

The content of composite regions, i.e., regions contained in
other regions, is not shown in Figs. 16 and 18. The nested con-
tainment for region R3+4 after applying rule L, as an example, is
depicted in Fig. 19. The complete RT for the corrected workflow
is presented in Fig. 20 in compact form.

B. Transformation Into Structured Form

For MDE interpreted as the field of developing complete
applications and other systems using visual models and mod-
eling tools (such as the Modeler [11]), the transformation from
graphical process models to the deployable code expected by
the runtime platform (e.g., BPEL) is analogous to the compila-
tion from a high-level programming language to machine code
expected by the underlying hardware platform. Cycle-removal
transformations and other transformations for workflows from
a less to a more structured form are part of this activity.

The equivalence of workflows and the transformation of un-
structured workflows into an equivalent structured form has been
studied in [19]. Sequential SESE regions can always be trans-
formed into an equivalent structured form and further to the
structured BPEL activities switch and while. Although not all
parallel SESE regions can be turned into an equivalent struc-
tured form, they can be directly transformed into BPEL flow
activities plus link constructs. Thus, the compilation of sepa-
rable workflows into BPEL is possible. The semantically sound
overlapped pattern can be turned into an equivalent structured
form by first duplicating the activities between the or-joins and
the and-join and then switching these join nodes [16]. Thus, all
region-reducible workflows can be converted into an equivalent
form that can be represented in BPEL.

To demonstrate the compilation to BPEL in greater detail, we
examine one region more closely and apply the transformation
rules discussed in [24]. Applying these rules blindly to the part
of the RT shown in Fig. 19 leads to the following BPEL skeleton
code.

〈while condition〉
〈invoke D /〉
〈invoke E /〉
〈switch〉

〈case condition〉
〈invoke F /〉

〈/case〉
〈/switch〉

〈/while〉

The parameters for the invoke activities and the conditions
for the while and switch activities have not been set, but it
is assumed here that they could be derived from the original
workflow. Because the cycle would be better represented by a
do-until than by a do-while loop, the condition of the loop must
also guarantee that activities D and E are invoked at least once.

As described in [24], rules Ct and Cs tend to move nodes
(such as activity F in this example) from the right and from the
left, respectively, into the cycles, although these nodes would
better stay outside. Because the area of the workflow contribut-
ing to a cycle is well known (see Fig. 19), an optimization step
can identify these nodes and move them out of the loop.

〈while condition〉
〈invoke D /〉
〈invoke E /〉

〈/while〉
〈invoke F /〉

VI. MAIN THEOREMS

The main theorems prove that a structurally sound workflow
is semantically sound if and only if it is region reducible.

A. Correctness Theorem

From the definition of the region-growing rules, the following
theorem is to be expected.
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Theorem 1: (Correctness Theorem) If a structurally sound
workflow is region reducible, it is semantically sound.

Proof: The behavior of a region with well-defined input and
output logic in terms of the flow of tokens is fully described
through its input and output logic, i.e., through its interfaces.
Therefore, we have to show that: 1) the initial regions with at
most one control node are well defined and 2) for all rules used
in the definition of region reducibility, the behavior of the region
on the right-hand side is the same as the behavior of the region
pattern on the left-hand side. The first part of the proof is trivial
because basic regions having no control node are SESE regions,
and basic regions containing one control node inherit their logic
from the control node.

For the second part of the proof, we show as an example that
rule Ct in Fig. 12(a) is well defined and leave the proof for
the other rules to the reader.5 If the number of tokens expected
by the input logic of region S is available, region S eventually
submits either a token on one of its upper two edges or a token
on one of the lower two edges to region T . In the latter case,
region T will eventually emit a token. The new region on the
right-hand side of the rule has the same input logic as region
S, and, in any case, it will emit eventually one and only one
token on one of its outgoing edges when the expected number
of tokens is available on the input side. �

B. Nonseparable Patterns

Practically, all workflows used in reality are separable. Thus,
workflows with an overlapped pattern come as a surprise for
most people when they are first exposed to them. If such an
unexpected pattern exists, the question arises whether other pat-
terns can be found among the semantically sound workflows that
are also not separable. We will show in the following lemmas
that this is not the case.

Before doing this, we first define the overlapped pattern more
precisely as n and-splits (n ≥ 2) and m or-joins (m ≥ 2) with
one path from every and-split to every or-join such that: 1) the
and-splits have no other outgoing paths; 2) the or-joins have no
other incoming paths; and 3) the regions between the and-splits
and or-joins are SESE regions (if the path from the and-split to
the or-join is not just one single edge). The last point guarantees
that the token emitted by an and-split to an or-join eventually
arrives and that no other tokens are created or consumed in this
part of the workflow.

Lemma 2: If a workflow w contains an SESE region that is
not semantically sound, w is not semantically sound.

Proof: If the SESE region is not semantically sound, there are
executions in which the region consumes a token, but does not
emit one, or there are executions in which the region consumes
and emits a token, but unconsumed tokens remain in the region.

1) There is no node in a workflow that can consume a token
without emitting one except for the end node. Because an
end node cannot be part of the SESE region, at least one

5Note that rule P in Fig. 13(b) is not well defined, because tokens on the
upper two input edges of the new region would result in tokens on the upper
two output edges even without tokens pending on the lower two input edges.

Fig. 21. Splitting and merging of control nodes.

unconsumed token must remain inside the SESE region if
a token entered but no token left the region.

2) If a token remains inside the SESE region when another
token leaves it, there are three possibilities: a) the work-
flow terminates with the unconsumed token still in the
SESE region; b) the workflow never terminates; or c) the
additional token leaves the SESE region as well. Only the
last case needs further considerations. Because there are
no synchronized conditions, the second token leaving the
region may take the same path as the first token for some
executions. However, there are no nodes that can emit
tokens after consuming two tokens waiting on the same
incoming edge, but could not emit tokens if only one token
is waiting there. Therefore, w either never terminates or
does so with unconsumed tokens.

In any case, w is not semantically sound. �
Thus, if a workflow w contains an SESE region that is not

semantically sound, this cannot be fixed in another part of w.
Lemma 3: If a semantically sound workflow is not separable,

it contains an overlapped pattern.
Proof: Let us assume that the structurally sound workflow w

is semantically sound but not separable. We show that if all ex-
ecutions of w terminate successfully, w contains an overlapped
pattern.

We first simplify w in such a way that the token flow, and
thus, also the property of semantical soundness are not affected.
(These simplifications have an obvious similarity with the re-
duction rules defined in [8].) Activities and, similarly, SESE
regions that must be semantically sound owing to Lemma 2
can be eliminated because they only influence the timing of the
token flow. Separable SESE regions can simply be removed,
and nonseparable SESE regions can be checked for overlapped
patterns independently. Thus, we can assume that w does not
contain any SESE region except for the one resulting when the
start and end node have been removed.

Furthermore, and as illustrated in Fig. 21, two adjacent control
nodes of the same type can be merged into one control node of
this type, or one control node (with enough edges) can be split
into two adjacent control nodes of the same type if this is needed
to eliminate additional separable parts of w. Assuming that x, y,
and z have the same type, the split control node x with at least
three outgoing edges and the two adjacent split control nodes y
and z in Fig. 21(a) are equivalent, and similarly, the join control
node x with at least three incoming edges and the two adjacent
join control nodes y and z in Fig. 21(b) are equivalent. In this
way, two direct edges from a split node to a join node of the same
type can be turned into an SESE region and can be eliminated
in this way.

Fig. 22 illustrates the remaining steps of the proof once all
possible simplifications of this kind have been performed.
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Fig. 22. Situations discussed in the proofs of Lemmas 3 and 4.

1) Workflow w must contain at least one parallel control node
because otherwise w would be separable. We select one, as
shown in Fig. 22(a), having only sequential control nodes
(zero or more) on a path path0 to the end node. If this
parallel control node emits a token, a token reaches the
end node in at least one possible execution through path0 .
The parallel control node must, therefore, be an and-join
aj because an and-split would lead to unconsumed tokens,
and thus, to unsuccessful executions.

2) We select an and-split as1 and two paths path1 and path2
such that the two paths lead from as1 to aj and do not con-
tain another and-split. (If this is not possible, there must
be unconsumed tokens or simplifications that have not yet
been performed. Note that no other tokens must be in the
workflow when aj emits a token.) At least one of the two
paths, say path1 , must contain a node x that is not as1 as
the predecessor of aj, because the two paths would oth-
erwise have been eliminated through the simplifications.
Node x, as shown in Fig. 22(b), cannot be an and-split be-
cause we selected as1 such that there is no other and-split
on the two paths. It also cannot be an and-join because
it would have been merged with aj. It cannot be an or-
split because this would require synchronized conditions
as a token would otherwise reach aj on path2 , but not
necessarily on path1 . Thus, x must be an or-join oj1 .

3) If node oj1 gets a token through an input edge other than
the one on path path1 , a token must also arrive at aj via
the last edge of path2 . As all SESE regions have been
eliminated during the initial simplification step, the token
arriving at oj1 cannot come from a node on path1 . Thus,
there must be an or-join oj2 on path2 (it is the predecessor
of aj, for the same reasons as before), and there must be
another and-split as2 leading to these two or-joins, as
shown in Fig. 22(c). We can repeat this argument if one
of the or-joins, say oj2 , has other incoming edges. If one
of the and-splits, say as1 , has other outgoing edges, the
token sent on it must be consumed before aj in such a
way that no deadlock occurs if as2 emits tokens. This is
only possible if there are n and-splits asi and m or-joins
ojj arranged in such a way that whenever one of the asi

receives a token, all ojj eventually get a token. Anything
else would lead to unconsumed tokens or a deadlock at aj.

4) If tokens are emitted from one asi to every ojj , these
tokens and only these tokens must also arrive. Because
all SESE regions have been removed, this is only possible
through direct edges. If aj has incoming edges not coming

from a ojj , we split aj such that all its incoming edges
come from one of the or-joins ojj . We can, therefore,
define a region as depicted in Fig. 22(d) (for the case
n = 2 and m = 2), in which the only edges leading into
this region are the incoming edges of the and-splits and
the only edge leading out of this region is the outgoing
edge of the and-join.

This region is an overlapped pattern connected to an and-join
at the back. �

The proof only shows that there must be an overlapped pattern
in a semantically sound workflow that is not separable, but not
that there are no other unexpected patterns.

Lemma 4: The overlapped pattern is the only non-separable
pattern in semantically sound workflows.

Proof: The rectangle shown in Fig. 22(d) is a region with
exactly n incoming edges leading to the n and-splits and one
outgoing edge leading eventually to the end node. If a token
comes into the region through one of the incoming edges, a
token will come out on the outgoing edge. With respect to the
token flow, this region is equivalent to a single or-join.

If the workflow after replacing the region with an or-join is
separable, we are done. If it is not separable, we repeat the
argument in the proof of Lemma 3. The original workflow has
only a finite number of nodes, and each step replacing a region
with an or-join reduces the number of nodes. Therefore, we
reach a separable workflow in a finite number of steps. �

C. Confluence Theorem

The rule application sequence is important for the creation
of an RT, but is irrelevant when determining whether an SESE
region or a workflow is region reducible.

Theorem 2: (Confluence Theorem) If one rule-application se-
quence shows that an SESE region is region reducible, also all
other possible rule application sequences do so.

Proof: We assume that an SESE region W has been shown
to be region reducible through one application sequence of the
rules (and therefore, is semantically sound owing to Theorem 1),
but another application sequence terminates before the SESE
region has been reduced to a single region having one incoming
and one outgoing edge. The assumption is that no rule can be
applied to the remaining region graph.

The proof is similar to the one of Lemma 3. We start from the
outgoing edge of the SESE region W and determine possible
regions that may remain if we avoid: 1) combinations of regions
that could be resolved with one of the region-growing rules
and 2) configurations that lead to deadlocks and/or unconsumed
tokens. The situations described during the proof are shown in
Fig. 23.

The last region L, i.e., the region with the outgoing edge of
W , must have “or” output logic, because no unconsumed tokens
are allowed to remain in W , when a token leaves the outgoing
edge of W . If an outgoing edge of L leads back to L, i.e., if
there is a self-cycle, L must have “or” input logic, because a
deadlock or unconsumed tokens would result otherwise, but rule
L could have been applied in this situation contrary to the earlier
assumption.
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Fig. 23. Situations discussed in the proof of Theorem 2.

Thus, region L cannot be the only remaining region, and we
can deduce the following structure of regions.

1) We look for a region R with “and” input and “or” output
logic close to the exit of the SESE region W . If region
L has “and” input logic, we select it to be region R, as
shown in Fig. 23(a).

2) Otherwise, we take one of the predecessors R of L, as
shown in Fig. 23(b), and note that R must have “and”
input logic, because with “or” logic, one of the sequential
region-growing rules for two neighbors could have been
applied to R and L.

3) In both cases, R has “or” output logic and “and” input
logic, and it emits the only token available in W when
it emits a token because otherwise unconsumed tokens
would result.

We determine all predecessors of R and call them Tj .
There must be more than one because either rule Pst could
have been applied or there must be deadlocks and/or un-
consumed tokens. If one Tj sends a token to R, all the
others eventually must do so also, and we can further con-
clude that all Tj have “and” output logic (or only one
outgoing edge), with all outgoing edges leading directly
or indirectly to R, because “or” output logic would require
synchronized conditions. The connections, however, can-
not be indirect because either rule Pst would be applicable
to one of the Tj and R or deadlocks and/or unconsumed
tokens would result otherwise.

Because all Tj must emit tokens to R when one Tj does,
there must be regions Si with direct or indirect paths to
the Tj and with “and” output logic such that every Tj

is connected to at least two Si . (If there is only one, the
input logic of the Tj would either be “and” or could be
interpreted as “and,” and a rule for two neighbors could
have been applied to these Tj and R.) Note that not every
Si may lead to every Tj , but that the Si and Tj can be
partitioned such that every pair Si and Tj is connected
if in the same partition or are unconnected if in different
partitions. This situation is shown in Fig. 23(c) for two
partitions. The first partition consists of regions S1 , S2 ,
T1 , and T2 , and the second partition consists of regions
S3 , S4 , T3 , and T4 .

If one of the Si in every partition gets enabled, it sends
a token to every Tj in the same partition, and eventually
every Tj is enabled. Thus, if one Si per partition is enabled,

the SESE region W may emit a token. Therefore, the Si

must have “or” input logic. The connections between the
Si and the Tj must be such that whenever an Si sends a
token on the path to the Tj , a token must also arrive there.
That is only possible through direct edges (or through
other SESE regions). Thus, each partition contains at least
two Si and two Tj and builds an overlapped pattern.

Contrary to our assumption, rule O can be applied. �

D. Completeness Theorem

The region-growing rules allow all semantically sound work-
flows to be detected.

Theorem 3: (Completeness Theorem) If a structurally sound
workflow is semantically sound, it is region reducible.

Proof: We determine all SESE regions of the workflow and
select an innermost region, i.e., a, SESE region that does not
contain other SESE regions. Because of the definition of sepa-
rable workflows and the Lemmas 3 and 4, the following three
cases have to be discussed.

1) Sequential SESE region: As long as the SESE region con-
tains at least two regions, one of the rules Cst , Cs , Ct ,
or C can be applied because they cover all cases of two
neighbors with only “or” logic. If in the end a single re-
gion remains that has more edges than the incoming and
the outgoing edge, these edges must be self-cycles and can
be resolved with rule L.

2) Parallel SESE region: As the region is not allowed to
contain cycles, there must be a path from the first region,
i.e., the region with the incoming edge of the SESE region,
to the last region, i.e., the region with the outgoing edge of
the SESE region, having maximal path length. Rule Pst or
rule Pt must be applicable to the first two regions on this
path because the second region cannot have predecessors
other than the first region in the SESE region, as otherwise
a longer path than the one with maximal path length would
result.

3) Overlapped pattern in an SESE region: The overlapped
patterns can be removed with rule O. We observe that
the result of rule O is the same as the result of rule Cst

(or Pst) applied to a region S with “or” input logic and
a region T with “and” output logic connected through
a single edge.6 Thus, there exists a different workflow
that does not contain overlapped patterns, but that would
have led to the same configuration. Because a semantically
sound SESE region without an overlapped pattern must be
separable, we can apply Theorem 2 together with the proof
for sequential and parallel SESE regions.

In any case, the SESE region can be reduced to a single region
with one incoming and one outgoing edge, and therefore, can be
replaced by an activity without changing the behavior in terms
of token flow. In this way, the entire workflow can be resolved,
SESE region by SESE region, from inside out. �

6Compare the abstraction rule φA in [5] and the merge-fork reduction rule
in [9] that are based on the same observation.
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VII. CONCLUSION

In this paper, we introduced the RT of a workflow and the
region-growing rules that allow the RT to be built in an in-
cremental and iterative way. Three families of rules have been
proposed: one for self-loops, one for processing two neigh-
bors, and one for overlapped patterns. The regions detected by
the rules and the interfaces between them, as defined through
the input/output logic of a region, reveal structural information
about the workflow that is useful for further applications. We
combined two such applications to demonstrate the power of
the region tree on an example.

The first area in which we used this structural information
is the detection of structural conflicts in workflows. The rules
not only detect but even localize the structural conflicts called
deadlock, lack of synchronization, and parallel cycles. They can
handle cyclic workflows and workflows containing overlapped
patterns, but they cannot handle workflows that would require
synchronized conditions.

The second possible application area explored, in this paper,
is the transformation (or compilation) of unstructured or insuf-
ficiently structured workflows into a more structured form as
expected by some runtime platforms. If, for example, the work-
flow is supposed to be deployed on a workflow engine based on
BPEL, cycles are only allowed in the form of do-while loops, and
unstructured cyclic workflows, therefore, have to be transformed
into this form first. This is possible because the region-growing
rules, in contrast to the reduction rules in [4], [5], and [8], do not
modify the original workflow, but create an overlay structure.

The region-growing rules introduced for constructing the RT
can still be used as reduction rules, leading to a concept of
reducibility similar to the one introduced in [8]. In the main the-
orems, we proved that this property, called region reducibility,
is equivalent to the property of semantical soundness, and that,
therefore, no additional rules are needed. As a consequence, an
algorithm to detect whether a workflow is region reducible can
also be used to determine whether it is semantically sound.

This paper concentrated on the demonstration of the concept
of the RT, on its application to structurally and semantically
sound workflows, on the definition of the region-growing rules,
on their applicability as reduction rules, and on the proof of the
main theorems. Future work includes extending the applicability
of the RT to other areas, and the definition of further rules and
concepts to handle structurally sound workflows that require
synchronized conditions and other more general forms of m-
out-of-n logic, e.g., interfaces expressible with pins in UML2
Activity Diagrams.
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