
TCP/IP and REXX
Programming with
REXX/SOCKETS

SHARE, San Francisco, California,
February 28th – March 5th, 1993

 and
SHARE Europe, Hamburg, Germany,

April 19th – 23rd, 1993
Session 2.7G

Arthur J. Ecock and Rainer F. Hauser

ECKCU@CUNYVM RFH@ZURLVM1
eckcu@cunyvm.cuny.edu rfh@zurich.ibm.com

City University of New York Zurich Research Laboratory

February, March and April 1993

–2–Rainer F. Hauser April 1993

TCP/IP Overview

The Transmission Control Protocol/Internet Protocol (TCP/IP) is a
communication facility based on the internet technology that has re-
sulted from research funded by the Defense Advanced Projects Re-
search Agency (DARPA).

An internet is a logical collection of networks supported by gateways,
routers, bridges, hosts, and various layers of protocols. An internet
permits different physical networks to function as a single, large virtual
network, and permits dissimilar computers to communicate with each
other.

A host is a computer, connected to a network, which provides an ac-
cess point to that network. A port is an end point for communication
between applications, generally referring to a logical connection.

internet

host1 host2

TCP/IP TCP/IP

port port

application application

server client

Figure 1: TCP/IP Communication Overview

–3–Rainer F. Hauser April 1993

TCP/IP Protocols and Layers

The TCP/IP layered architecture consists of many protocols:

• Network Layer:
Token Ring, Ethernet, X.25, and others

• Internetwork Layer:
Internet Protocol (IP), Internet Control Message Protocol
(ICMP), Address Resolution Protocol (ARP)

• Transport Layer:
Transmission Control Protocol (TCP), User Datagram Protocol
(UDP)

• Application Layer:
Telnet, File Transfer Protocol (FTP), Simple Mail Transfer Proto-
col (SMTP), Kerberos Authentication System, Remote Printing
(LPR/LPD), X Window System, Socket Interfaces, and others.

TCP provides a reliable vehicle for delivering packets between hosts
on an internet. UDP provides an unreliable mode of communication
between source and destination hosts.

Socket Interfaces allow programmers to write their own applications
to supplement those supplied by TCP/IP. Sockets permit full–duplex
transmission (transmission in both directions simultaneously). Read-
ing and writing to a socket appears very similar to performing I/O to a
file or any other network device.

–4–Rainer F. Hauser April 1993

TCP/IP Connections

Note: The following is an example of connection–oriented use of TCP/
IP. The connectionless mode is not discussed.

A TCP connection is a set of two character queues (one for each
direction) which represent the connection over the network.

Application in
host1

Application in
host2

c c c c c c c c

c c c c c c

c

Figure 2: Character Queues for a TCP Connection

There are functions to add characters to a queue on the sender’s side
(Send, Write) and to remove characters from the queue on the receiv-
er’s side (Recv, Read) of an established connection. The socket inter-
face is a convenient interface to issue these and other functions.

–5–Rainer F. Hauser April 1993

Socket Functions

The design of the socket interface is closely related to the program-
ming language C.

int socket(int domain, int type, int protocol);

...

int s;

...

s = socket(AF_INET, SOCK_STREAM, 0);

There are many socket functions, but the following are of general inter-
est:
socket() – gets a socket number to read from or write to
bind() – associates a socket with a port number
listen() – listens to connect requests on the socket
select() – waits for activity on a socket
connect() – requests a connection
accept() – accepts a connect request
send() or write() – writes data to the socket
recv() or read() – reads data from the socket
close() – returns socket number
givesocket() and takesocket() – transfer a socket

Addressing

When a client tries to connect to a server, the internet address and the
port number must be known. The internet address identifies the host,
and the port number identifies the application. Internet addresses are
usually structured such as 128.228.1.2 (for host CUNYVM) or 9.4.3.2
(for host ZURLVM1).

–6–Rainer F. Hauser April 1993

Socket Protocol Overview

A typical TCP Socket session between a client and a server:

Client on host1 Server on host2TCP/IP and network

socket()

s=4

listen(4,bl)

socket()

s=7
connect(7,p,i)

bind(4,p,i)

accept(4)

s=5

send(7,data)

l=271

send(5,data)

l=38

recv(7)

data

recv(5)

data

close(5)close(7)

associate the
socket 4 with
port and ipad

create socket

create socket

wait for a
connect from
a client and

connect to
the server

the queues are established

close socket close socket

exchange data

accept it

listen on s=4

Figure 3: Typical TCP Socket Session

–7–Rainer F. Hauser April 1993

REXX/SOCKETS Overview

REXX/SOCKETS is a REXX interface to the TCP/IP Socket calls for
CMS users.

CP

TCPIPUSER1

REXX/SOCKETS

REXX

IUCV

Figure 4: REXX/SOCKETS Overview

REXX/SOCKETS provides the REXX function SOCKET:

result = SOCKET(subfunction,arg1,...,argn)

Supported subfunctions are:
Initialize, Terminate, SocketSet, SocketSetStatus, ...
Socket, Bind, Listen, Connect, Accept, Shutdown, Close, ...
GiveSocket, TakeSocket, GetClientId, ...
GetHostId, GetHostName, GetHostByAddr, GetHostByName, ...
Read, Recv, RecvFrom, Write, Send, SendTo, ...
GetSockOpt, SetSockOpt, Ioctl, ...

Note: REXX/SOCKETS supports the non–blocking mode (and the
Select socket function) through REXX/WAIT.

The result consists of a return code and additional data depending on
which subfunction was called.

–8–Rainer F. Hauser April 1993

REXX/SOCKETS Concepts

The language definition and concepts of REXX guided the design of
REXX/SOCKETS:

1. When a REXX program using REXX/SOCKETS terminates, the
status of REXX/SOCKETS is kept. In other words, when a REXX
program terminates, sockets are not closed and the characters
in the queues of a connection remain.

2. The TCP/IP socket interface is not the only protocol which can
be supported by REXX. Therefore, names such as CONNECT
and ACCEPT should be avoided as names for REXX functions.

3. The arguments to the REXX function SOCKET and its result
string are always character strings. The strings ’128.288.1.2’
and ’9.4.3.2’, for example, are valid internet addresses and can
directly be used in subfunctions such as Bind.

4. The REXX function SOCKET does not have side effects. For ex-
ample, no REXX variables (such as RC) are modified, and the
result string contains all information available separated by
blanks for easy parsing.

5. Waiting for one event within a given list of expected events is
such an important function, that it must be provided directly by
REXX and not by REXX/SOCKETS. Therefore, REXX/SOCK-
ETS supports waiting (the Select socket function) through the
central WAIT function in REXX/WAIT.

–9–Rainer F. Hauser April 1993

REXX/WAIT Overview

REXX/WAIT (when loaded as a nucleus extension) provides a set of
additional REXX functions useful for REXX programs using the REXX
interface to the TCP/IP socket calls:

result = WAIT(event1 [args1],...,eventn [argsn])

result = SETVALUE(event [args])

result = QUERYVALUE(event [args])

result = RESETVALUE(event)

ebcdicstring = AC2EC(asciistring)

asciistring = EC2AC(ebcdicstring)

type = CTYPE([type])

table = CTABLE(type,[option],[start],[end],[table])

The first four functions return in the result string a return code and other
data depending on the function and the event name.

The SETVALUE, QUERYVALUE and RESETVALUE functions control
the default arguments for waiting with the WAIT function which allows
to wait for an event in a given set of possible events:

result = SETVALUE(’SOCKET 5 NON–BLOCKING’)

result = WAIT(’CONS’,’SOCKET READ 5 WRITE 7 8’)

result = WAIT(’TIME 10MIN’,’SOCKET READ 5’)

The AC2EC and EC2AC functions convert character strings from
ASCII to EBCDIC encoding and vice versa. The translation table can
be set with the CTABLE function. The CTYPE function allows to deter-
mine whether the machine on which the REXX program runs uses
ASCII or EBCDIC encoding.

–10–Rainer F. Hauser April 1993

REXX/WAIT Low–Level Interface

Through the low–level interface provided by REXX/WAIT, other pro-
grams (such as REXX/SOCKETS) can export an event name (such as
SOCKET) to become available for the WAIT, SETVALUE, QUERYVA-
LUE and RESETVALUE functions.

REXX/WAIT

WAIT()
SETVALUE()
QUERYVALUE()

CONS

TIME

...

SOCKET

...

REXX/SOCKETS

SOCKET()

AC2EC()
EC2AC()
CTYPE()
CTABLE()

Event Handlers

RESETVALUE()

Figure 5: REXX/WAIT Interfaces

–11–Rainer F. Hauser April 1993

REXX/SOCKETS & REXX/WAIT Examples

The following are valid REXX statements and their possible results
when REXX/SOCKETS and REXX/WAIT are available:

Socket(’Initialize’,’myId’) == ’0 myId 40 TCPIP’

Socket(’Socket’) == ’0 1’

Socket(’Connect’,1,’AF_INET 1234 128.228.1.2’) == ’0’

SetValue(’Socket 1 Non–Blocking’) == ’0 BLOCKING’

Socket(’Recv’,1) == ’35 EWOULDBLOCK Operation would block’

Wait(’Socket Read 1 2 3’,’Cons’) == ’0 READ 1’

Socket(’Recv’,1) == ’0 25 Here are twentyfive bytes’

Socket(’Send’,1,’We send twentyfour bytes’) == ’0 24’

Socket(’ShutDown’,1,’Both’) == ’0’

Socket(’Close’,1) == ’0’

Socket(’SocketSet’) == ’0 myId’

Socket(’Terminate’) == ’0 myId’

The subfunctions accepting internet addresses in their input parame-
ters also allow names in the form ’CUNYVM’ when it makes sense. As
output in the result string, internet addresses are always in the form
’128.228.1.2’.

Socket(’Connect’,1,’AF_INET 99 128.228.1.2’) == ’0’

Socket(’Connect’,1,’AF_INET 99 CUNYVM’) == ’0’

Socket(’Connect’,1,’AF_INET 99 CUNYVM.CUNY.EDU’) == ’0’

Socket(’Accept’,2) == ’0 3 AF_INET 5678 9.4.3.2’

–12–Rainer F. Hauser April 1993

REXX/SOCKETS Server Sample Part 1

The server sample program accepts connect requests from clients
and receives data:

/* RCVSAMPL –– REXX/SOCKETS server example */

parse arg .

parse value SOCKET(’Initialize’,’Example’) with src .

if src<>0 then exit src

parse value SOCKET(’GetHostId’) with src IpAddress .

parse value SOCKET(’Socket’) with src Socket .

call SOCKET ’BIND’,Socket,’AF_INET 1993’ IpAddress

call SOCKET ’LISTEN’,Socket,10

call SETVALUE ’SOCKET’ Socket ’NON–BLOCKING’

call SETVALUE ’SOCKET READ’ Socket

do forever

 parse value WAIT(’SOCKET’,’CONS’) with wrc Type Descriptor

 say ’Event=’Type ’(’Descriptor’)’

 select

 when Type=’SOCKET’ then do

 call ProcessTcpip Descriptor

 end

 when Type=’CONS’ then do

 if Descriptor=’EXIT’ then leave

 end

 end

end

call SOCKET ’Close’,Socket

call SOCKET ’Terminate’

exit 0

The actual processing of the Socket events is done in the subroutine
ProcessTcpip.

–13–Rainer F. Hauser April 1993

REXX/SOCKETS Server Sample Part 2

The subroutine ProcessTcpip which processes TCP/IP events:

ProcessTcpip:

 procedure expose Socket Counter.

 selector = arg(1)

 parse var selector Type SocketId

 if Socket=SocketId then do

 parse value SOCKET(’Accept’,Socket) with src SocketId Peer

 say ’TCP/IP Connection=’Peer

 call SETVALUE ’SOCKET’ SocketId ’NON–BLOCKING’

 parse value QUERYVALUE(’SOCKET DEFAULTS’) with wrc EList

 call SETVALUE ’SOCKET’ EList SocketId

 Counter.SocketId = 0

 end

 else do

 parse value SOCKET(’Recv’,SocketId) with src msglen Message

 if Message<>’’ then do

 Counter.SocketId = Counter.SocketId + length(Message)

 say Message

 end

 else do

 call SOCKET ’Close’,SocketId

 say Counter.SocketId ’bytes received on socket’ SocketId

 end

 end

return

Depending on the socketid, the subroutine either accepts the connect
request or receives data. If the message is empty, the connection has
been closed by the peer.

–14–Rainer F. Hauser April 1993

REXX/SOCKETS Client Sample

The client sample program connects to the server (on the same host)
and sends data:

/* SNDSAMPL –– REXX/SOCKETS client example */

parse arg Count Message

parse value SOCKET(’Initialize’,’Example’) with src .

if src<>0 then exit src

parse value SOCKET(’GetHostId’) with src IpAddress .

parse value SOCKET(’Socket’) with src Socket .

call SOCKET ’Connect’,Socket,’AF_INET 1993’ IpAddress

do i=1 to Count by 1

 parse value SOCKET(’Send’,Socket,Message) with src msglen .

 say ’Sent’ msglen ’bytes with rc=’src

 if src<>0 then leave

end

call SOCKET ’Close’,Socket

call SOCKET ’Terminate’

Comments

The server program sets all sockets to non–blocking mode and waits
on events using REXX/WAIT. The client program however uses the
blocking mode and therefore gets blocked in the connect and send
subfunctions.

In order to keep the sample programs small, both programs do not in-
clude the testing necessary for real application programs. Since the
first token of the result string is the return code, its value should always
be checked.

–15–Rainer F. Hauser April 1993

REXX/SOCKETS History and Status

4/91 REXX/WAIT available on IBM’s VMTOOLS disk
8/91 RXSOCKET available on BITNET’s LISTSERV
12/91 REXX/SOCK available on IBM’s VMTOOLS disk
3/92 Agreement between Arty Ecock and Rainer Hauser

to combine RXSOCKET and REXX/SOCK
11/92 Syntax for REXX/SOCKETS complete:

RXSOCKET + REXX/SOCK = REXX/SOCKETS

2/93 REXX/SOCKETS available on BITNET’s LISTSERV
and on IBM’s VMTOOLS disk

Future

We hope that REXX/SOCKETS and REXX/WAIT together will be in-
cluded in the next release of IBM’s TCP/IP product for VM. There is
also interest in making them available for MVS as well.

REXX/SOCKETS and REXX/WAIT have both been designed to be
portable to REXX on other platforms. When available on platforms us-
ing ASCII encoding, carefully written REXX programs should continue
to run unmodified.

