
IBM RXIUCVFN
VM REXX IUCV Function Package

Reference Manual

RXIUCVFN/2.00

2nd Edition

(c) Copyright IBM Corporation 1988, 2003.

 Contents

Introduction . 1

Function Syntax . 3
The REXX Function IUCV . 3
Return Codes of the Functions . 6
General Remarks . 7

Functions to Activate or Deactivate IUCV . 11
Function INIT . 11
Function TERM . 11

Functions to Manipulate IUCV Paths . 13
Function CONNECT . 13
Function ACCEPT . 13
Function SEVER . 13
Function QUIESCE . 14
Function RESUME . 14

Functions to Manipulate IUCV Messages . 15
Function SEND . 15
Function PURGE . 15
Function RECEIVE . 15
Function REJECT . 16
Function REPLY . 16

Auxiliary Functions . 17
Function QUERY . 17
Function WAIT . 18

Support for REXXWAIT . 21
The REXX Function WAIT . 21
The REXX Function SETVALUE . 21
The REXX Function QUERYVALUE . 22
The REXX Function RESETVALUE . 22

Examples . 23
IUCV Communications Pattern . 23
Sample of an Interactive Session . 24
Sample CMS IUCV Session . 25
The REXX-EXEC QUSER . 26
Further Examples . 29

Index . 31

 Contents iii

iv VM REXX IUCV Functions

 Figures

1. Summary of functions in RXIUCVFN . 5
2. Result string returned by functions in RXIUCVFN . 6
3. Sample IUCV communications pattern . 23

 Figures v

vi VM REXX IUCV Functions

 Introduction

RXIUCVFN (also called REXXIUCV) is an external REXX function package that, when loaded as a
nucleus extension, provides a comprehensive set of functions to make use of the IUCV facility (either
native or using the CMS IUCV interface). Applications using IUCV usually have to be programmed in
assembler language. Thus, this package enables a programmer to implement and test draft or final sol-
utions for procedures using IUCV within REXX. With this package a user may also gain some experience
with IUCV. RXIUCVFN contains functions to handle the IUCV environment, IUCV paths and IUCV mes-
sages together with some auxiliary functions.

For those not familiar with IUCV (Inter-User Communications Vehicle), it is a communications facility that
enables a program running in a virtual machine to communicate with other virtual machines (if such con-
nections are allowed in the CP directory), with a CP system service such as *MSG (see the REXX-EXEC
'QUSER' below), and with itself (see the sample session below).

The user of the RXIUCVFN package is assumed to have at least some rough understanding of IUCV as
described in the System Programmer's Guide (VM/SP System Programmer's Guide, SC19-6203), or more
recent IBM manuals.

The RXIUCVFN package is available from the VMTOOLS conferencing disk as REXXIUCV package. It
consists of a module, a CMS help file and this documentation. In addition, some examples are included.

Before a user can use any of the IUCV functions described below, he will need to enter a command that
will cause these functions to be installed as a nucleus extension.

To install the IUCV functions, enter:

'RXIUCVFN LOAD'

To unload (de-install) the functions, enter:

'NUCXDROP RXIUCVFN'

To find out whether the functions have already been installed, enter:

'RXIUCVFN TEST'

The return code tells that the package has already been loaded (RC=0) or that it has not yet been loaded
(RC=1).

Note: RXIUCVFN is available under the name "VM REXX Programming Support for IUCV" (REXXIUCV)
and the Program Number 5785-LAT in several countries. (See the Availability Notice, GB11-8432, and/or
the Program Description and Operations Manual, SB11-8433, for more information.)

 Introduction 1

2 VM REXX IUCV Functions

 Function Syntax

The general behavior of the REXX function IUCV is described in the following. Details about the behavior
of the various subfunctions are presented in the next chapters.

The REXX Function IUCV

The package contains only one REXX function, called IUCV, and the name 'function' is used in this doc-
umentation to denote its subfunctions. The general syntax of all functions is

IUCV(function,arg1,arg2,...,argn)

Result: result-string

and all functions return a result string (with the different items separated by a blank) that can be parsed by
REXX in the usual way. The function QUERY consists of some subfunctions specified in arg1. When they
are referenced, names such as QUERY-VERSION are used to distinguish these subfunctions. In addition
to the result string, the REXX variable 'RC' is set because the IUCV return code carries important informa-
tion. (The target side of an IUCV path only knows whether the source side has purged a message when
he tries to receive it and analyzes the return code.) As a rule, the result string is empty when the return
code is not zero, but there is an exception: Receiving only a part of the message returns this part in the
result string and sets a return code 5 according to IUCV to indicate that the receive buffer was too short.

The input parameters for the individual functions and the items in the result string together with their range
and default values are described in alphabetical order in the following list:

cmsiucv Use of CMSIUCV interface ('Application'|'Cms'|'Native')
Default: 'NATIVE'
Input to INIT

cmsname CMSIUCV name (arbitrary characters up to 8 bytes)
Default: 'RXIUCVFN' (entered value padded with blanks)
Input to INIT
Output of QUERY-CMSNAME

data Message or reply data (arbitrary characters up to 100,000 bytes)
Input to SEND, REPLY
Output of RECEIVE, QUERY-REPLY

date Date of the package
Output of QUERY-VERSION

error Initialization error indication ('Yes'|'No')
Output of QUERY-STATUS

extint External interrupt type (hexstring 4 bytes)
Output of WAIT

how Wait keyword or number ('WAIT'|'NOWAIT'|arbitrary integer)
Default: 'WAIT'
Input to WAIT

init Initialized indication ('Yes'|'CMS'|'No')
Output of QUERY-STATUS

intstatus IUCV interrupt enabled indication ('On'|'Off')
Output of QUERY-STATUS

 Function Syntax 3

msgcls Source or target message class (see srccls and trgcls)
Input to QUERY-NEXT

msgid Message identification (integer)
Input to PURGE
Output of SEND, REPLY, QUERY-NEXT

msglength Maximal length of a message (integer between 0 and 100,000)
Default: whole length of the message
Input to RECEIVE
Output of QUERY-NEXT

msglim Maximal number of outstanding messages (integer between 1 and 10,000)
Input to CONNECT, ACCEPT
Output of CONNECT, ACCEPT, QUERY-NEXT

mvmid Monopolized vmid (arbitrary vmid up to 8 bytes)
Input to INIT
Output of QUERY-MVMID

name Name of the package ('RXIUCVFN')
Output of QUERY-VERSION

numintb Maximal number of interrupt buffers (integer between 1 and 1,000,000)
Default: 500
Input to INIT

numpath Maximal number of paths (integer between 1 and 2,000)
Input to INIT
Output of INIT

pathid Path identification (non-negative integer)
Input to ACCEPT, SEVER, QUIESCE, SEVER, SEND, PURGE, RECEIVE, REJECT,
REPLY, QUERY-PATH, QUERY-NEXT, QUERY-REPLY
Output of CONNECT, ACCEPT, QUERY-PATH, QUERY-NEXT

pathlist List of pathids (see pathid)
Output of TERM, QUERY-PATH

pending Number of pending interrupt buffers (non-negative integer)
Output of QUERY-NEXT

prio Priority messages keyword ('PRIORITY'|'NONPRIORITY')
Default: 'NONPRIORITY'
Input to CONNECT, ACCEPT, SEND, REPLY
Output of QUERY-NEXT

prm Message or reply data in parameter list keyword ('PRMDATA'|'NOPRMDATA')
Default: 'NOPRMDATA'
Input to SEND, REPLY

qkeyword Query keyword
('STATUS'|'VERSION'|'CMSNAME'|'MVMID'|'PATH'|'NEXT'|'REPLY')
Input to QUERY

rpl Reply needed keyword ('REPLY'|'NOREPLY')
Default: 'NOREPLY'
Input to SEND
Output of QUERY-NEXT

rpllength Maximal length of a reply (integer between 0 and 100,000)
Input to SEND
Output of QUERY-NEXT

seconds Number of seconds to wait (integer between 1 and 3,600)
Input to WAIT

srccls Source message class (arbitrary integer)
Input to SEND, PURGE, QUERY-REPLY
Output of QUERY-NEXT

4 VM REXX IUCV Functions

trgcls Target message class (arbitrary integer)
Input to SEND, RECEIVE, REJECT, REPLY
Output of QUERY-NEXT

type Interrupt buffer type (non-negative integer)
Input to QUERY-NEXT
Output of QUERY-NEXT

userdata User data (arbitrary characters up to 16 bytes)
Default: XL16'00' (entered value padded with X'00')
Input to CONNECT, ACCEPT, SEVER, QUIESCE, RESUME
Output of QUERY-NEXT

version Version of the package (currently 2.00)
Output of QUERY-VERSION

vmid VM userid or CP service (alphanumeric up to 8 bytes)
Input to CONNECT
Output of QUERY-PATH, QUERY-NEXT

Figure 1 summarizes the functions available in this package. The internals of the individual functions are
described in some detail below. The functions are divided into four classes:

� functions to activate or deactivate IUCV

� functions to manipulate IUCV paths

� functions to manipulate IUCV messages

 � auxiliary functions

(INIT,numpath,[cmsiucv,[cmsname],[mvmid]],[numintb])
(TERM)

(CONNECT,vmid,msglim,[prio],[userdata])
(ACCEPT,pathid,msglim,[prio],[userdata])
(SEVER,pathid,[userdata])
(QUIESCE,pathid,[userdata])
(RESUME,pathid,[userdata])

(SEND,pathid,data,srccls,trgcls,[prio],[prm],[rpl,[rpllength]])
(PURGE,pathid,srccls,msgid)
(RECEIVE,pathid,trgcls,[msglength])
(REJECT,pathid,trgcls)
(REPLY,pathid,data,trgcls,[prio],[prm])

(QUERY,'STATUS')
(QUERY,'CMSNAME')
(QUERY,'MVMID')
(QUERY,'VERSION')
(QUERY,'PATH',[pathid])
(QUERY,'NEXT',[type],[pathid],[msgcls])
(QUERY,'REPLY',pathid,[srccls])
(WAIT,seconds,[how])

Figure 1. Summary of functions in RXIUCVFN

Figure 2 on page 6 summarizes the result string returned by functions of this package. The different items
in the result string can always be parsed and identified uniquely. Functions returning 'data' (message data

 Function Syntax 5

or reply data) do not return any other items to guarantee this uniqueness. (This is one reason why the
return code is set into the REXX variable 'RC' and is not delivered within the result string.) For
QUERY-NEXT the items following 'type' are listed for all possible values of 'type'.

INIT numpath
TERM pathlist

CONNECT pathid msglim
ACCEPT pathid msglim
SEVER
QUIESCE
RESUME

SEND msgid
PURGE
RECEIVE data
REJECT
REPLY msgid

QUERY-STATUS init error intstatus
QUERY-CMSNAME cmsname
QUERY-MVMID mvmid
QUERY-VERSION name version date
QUERY-PATH pathlist | [pathid vmid]
QUERY-NEXT pending [type pathid others]

[1 pathid msglim vmid prio userdata]
[2 pathid msglim userdata]
[3 pathid userdata]
[4 pathid userdata]
[5 pathid userdata]
[6 pathid msgid srccls[rpl rpllength]]
[7 pathid msgid srccls[rpl rpllength]]
[8 pathid msgid trgcls msglength[rpl rpllength]]
[9 pathid msgid trgcls msglength[rpl rpllength]]

QUERY-REPLY data
WAIT extint

Figure 2. Result string returned by functions in RXIUCVFN

Return Codes of the Functions

It is not usual for REXX built-in functions to return any return codes in the REXX variable 'RC'. But here
the decision was made to make the IUCV (and other) return codes available to the user in the REXX
variable 'RC'. (Note that not all possible IUCV return codes can occur because some are prevented by
RXIUCVFN.)

Return codes set according to IUCV:

 0 Normal return
 1 Invalid path ID specified
 2 Path quiesced - no sends allowed
 3 Message limit exceeded
 4 Priority messages not allowed on this path

6 VM REXX IUCV Functions

 5 Receive or answer buffer too short to contain message
 6 Storage protection exception on send or answer buffer
 7 Addressing exception on send or answer buffer
 8 Message found but message class or path id invalid
 9 Message has been purged
10 Message length is negative
11 Target communicator is not logged on
12 Target communicator has not invoked DCLBFR
13 Maximum path number for source communicator
14 Maximum path number for target communicator
15 No authorization found
16 Invalid CP system service name
17 Invalid function code in IPFCNCD
18 Value in IPMSGLIM exceeds 255
19 A previously declared buffer is still in use
20 Originator has severed this path
21 Parameter list data not allowed on this path
22 Send or answer buffer list invalid
23 Negative length in buffer list
24 Incorrect total length of buffer list lengths
25 PRMMSG option invalid with BUFLIST/ANSLIST option
26 Buffer list not on a doubleword boundary
27 Answer list not on a doubleword boundary
29 Any other return code from IUCV

Other return codes set by RXIUCVFN functions:

30 Invalid arguments
31 Not enough free storage available
32 No more path allowed
33 Message too long
34 Path neither connected nor pending
35 No corresponding interrupt buffer pending
36 Bad condition code from IUCV or return code from CMSIUCV
37 No initialization has yet been performed
38 Initialization has already been performed
39 The IUCV error bit was set
40 CMSIUCV name already in use by another program

 General Remarks

This section presents some general remarks important for users of this package:

1. IUCV can either be used in synchronous mode (send-receive-reply sequences) or in asynchronous
mode (send-receive sequences). Each IUCV interrupt (external interrupt X'4000') is described in a 40
byte interrupt buffer. QUERY-NEXT passes its relevant information to the user.

2. IUCV allows up to 65,535 paths for a communicator (MAXCONN in OPTION directory statement).
However, CP supports only four connections (i.e. paths) when MAXCONN is not specified in the CP
directory, while this package currently allows up to 2000 connections. There is also an IUCV directory
statement to specify what kind of connections are accepted by CP and how many outstanding mes-
sages per path (MSGLIM parameter) are allowed. Virtual machines usually are not allowed to have
connections to other virtual machines, and without specification of MSGLIM in the directory only ten
messages per path may be outstanding. (The upper limit for this parameter is 255 for pre-ESA

 Function Syntax 7

systems and 65,535 for ESA systems.) This package currently allows 10,000 as a maximum value.
Thus, to make full use of the package, the CP directory must be changed. Discuss this topic with your
system administrator.

3. Function names can be abbreviated to four characters in length, and up to eight characters of a name
are tested. (For INIT and TERM the names INITIALIZE and TERMINATE are allowed.)

4. To make programming of RXIUCVFN easier, only the first letter of an input keyword is inspected.
(IUCV('QUERY','V') and IUCV('QUERY','VIRTUAL') have the same effect as
IUCV('QUERY','VERSION').)

5. The QUERY-NEXT deletes the external interrupt buffer when no action is needed. (Interrupt buffers of
type 02, 03, 04 and 05 are always deleted, while for type 06 and 07 the buffer is only deleted when no
reply is pending.) When an action is needed this action deletes the interrupt buffer. (A pending con-
nection type interrupt buffer is deleted when the corresponding path is accepted or severed. Other
cases are treated in a similar fashion.)

6. When more interrupt buffers than specified in the INIT function are pending, the IUCV interrupts are
temporarily disabled to avoid queue overflow. This event is reflected in the result of QUERY-STATUS.
In this situation the pending interrupt buffer queue should be emptied.

7. With QUERY-NEXT the user is informed that a message needs a reply only when the whole message
has been received. It was done this way primarily to distinguish between pending messages and
replies not yet sent. If this solution is found unsatisfactory it may be changed.

8. When using the WAIT function on VM/SP the timer should be set to real (CP SET TIMER REAL)
because otherwise the wait may never end.

9. The WAIT function has been generalized for version 1.02. This was primarily done because between
an IUCV('QUERY','NEXT',,pathid) returning only the value 'pending' (no interrupt buffer pending on the
specified path) and the actual IUCV('WAIT') another interrupt buffer may have arrived.

10. In some cases the message class (represented as integer value) is used for multiplexing. On the
receiving side this information is available before an actual RECEIVE operation has been invoked.
REXX is powerful enough to handle the message class value in any desired way.

11. The PRMDATA option in IUCV is only available in VM release 3.00 and later. Its use in earlier
releases may cause strange and unrecoverable errors.

12. When initialized with the keyword 'CMS' or 'NATIVE', this package monopolizes the external new
PSW. Thus, while IUCV is active (between INIT and TERM) no program should run using external
interrupts. When a program is active using external interrupts other than '4000'x or '00xx'x before INIT
is issued, there is no problem (clock comparator or VMCF programs). But they should not change the
EXTNPSW between INIT and TERM. An IUCV('WAIT') also ends when other external interrupts occur
and gives its code as a result.

13. When initialized with the 'APPLICATION' keyword, the external new PSW is not touched. In this case,
the WAIT function only terminates on timer or IUCV interrupts. The WAIT function uses the WAITECB
macro. (Make sure that the corresponding function is available on the VM system you use. It may not
be provided on VM/SP release 4 and earlier.) Initializing REXXIUCV with the keyword 'APPLICATION'
is the suggested method for application programs, if no monopolized vmid is needed and no interrupts
other than timer and IUCV.

14. When initialized with the keyword 'CMS' or 'APPLICATION', RXIUCVFN supports waiting through the
REXXWAIT package in addition to the function WAIT. The REXXWAIT program in the REXXWAIT
package allows waiting for basic events such as console, message, mail and time events. In addition,
other programs (such as REXXIUCV) can export their events.

15. Some parameters in the IUCV parameter list are not supported (FCNCD and MSGTAG are always set
to hexadecimal zeros). The IUCV trace table handling is not used in this package.

8 VM REXX IUCV Functions

16. The IPQUSCE option is not supported: A connection cannot be requested or accepted in quiesced
mode.

17. Some IUCV functions (DESCRIBE, TESTCMPL, TESTMSG, SETMASK, SETCMASK) are not sup-
ported because their function is performed in a different way in this package. The IUCV QUERY is
only partially used and supported in INIT.

18. The use of CMS IUCV is a local matter. It does not influence the communication partners with excep-
tion of the use of the user data field in CONNECT. E.g., if an application consists of a server and
many clients, the server may or may not use CMS IUCV, and each client may or may not use it as
well, independently of each other. For the use of CMS IUCV, see the sample CMS IUCV session
below.

19. Connections to the CP service '*MSG' are of special interest. When using this package (see the
REXX-EXEC 'QUSER' below), normal VM messages, warnings, and SMSG's can be received at the
time the user wants to receive them. With the CP command 'SET' different objects (MSG, SMSG,
WNG, IMSG, EMSG, CPCONIO and VMCONIO) can be directed to IUCV. It is easy to write an
REXX-EXEC to stack the output of any CMS commands not touching the EXTNPSW, but there is the
limit of 255 outstanding messages.

20. PVM (extended version 4.1001) supports internode IUCV communications. Such a connection is
established when a connection to PVM has been requested with the actual target communicator speci-
fied in the 16 byte 'userdata' field of the IUCV parameter list (8 bytes nodeid and 8 bytes userid). PVM
just stores and forwards corresponding IUCV connection requests, messages, replies and so on.
There are some limitations: Internode connections cannot be quiesced and priority messages and
replies are not allowed.

21. IUCV between different systems as supported by PVM (extended version 4.1001) and CMS IUCV
make conflicting use of the userdata field in connection requests. RXIUCVFN version 1.09 supports
both and therefore resolves this conflict. The vmid of the PVM virtual machine (usually 'PVM') can be
specified in the field 'mvmid' of the INIT function to allow PVM IUCV and CMS IUCV together.

 Function Syntax 9

10 VM REXX IUCV Functions

Functions to Activate or Deactivate IUCV

There are two functions to manipulate the IUCV environment, one to initialize or activate and one to termi-
nate or deactivate IUCV, which must be initialized before paths and messages can be manipulated:

 Function INIT

IUCV('INIT',numpath,[cmsiucv,[cmsname],[mvmid]],[numintb])

Result: numpath

The function returns the actual maximal number of paths allowed. This number may be smaller than the
number requested in the input parameter, depending on the limit set in the CP directory.

In the code of this function an IUCV QUERY (to determine the actual MAXCONN parameter in the CP
directory) and an IUCV DCLBFR (to specify the IUCV external interrupt buffer) are executed. Depending
on whether native or CMS IUCV is initialized, DCLBFR is directly called or via HNDIUCV SET. Some
buffers are allocated and an external interrupt handler may be installed by overwriting the EXTNPSW.

Note: QUERY-STATUS can be used to check whether an INIT has already been performed.

 Function TERM

IUCV('TERM')

Result: pathlist

The function returns a list of pathids automatically severed by IUCV.

In the code of this function an IUCV RTRVBFR (to reset IUCV) is executed. The allocated storage is freed
again and the initial EXTNPSW is properly reinstalled.

Note: If the RXIUCVFN package is unloaded before a TERM has been performed, an implicit TERM will
be issued.

 Functions to Activate or Deactivate IUCV 11

12 VM REXX IUCV Functions

Functions to Manipulate IUCV Paths

There are five functions to manipulate IUCV paths. Paths can be connected, accepted, severed, quiesced
and resumed.

 Function CONNECT

IUCV('CONNECT',vmid,msglim,[prio],[userdata])

Result: pathid msglim

The function returns the pathid and the msglim value returned by IUCV.

In the code of this function an IUCV CONNECT (to request a path with the specified vmid) is executed.
On the side of the vmid an IUCV external interrupt indicates that a connection is pending.

Note: All connections allow the IUCV 'PRMDATA' option by default.

 Function ACCEPT

IUCV('ACCEPT',pathid,msglim,[prio],[userdata])

Result: pathid msglim

The function returns the pathid and the msglim value returned by IUCV.

In the code of this function an IUCV ACCEPT (to accept a requested path with the requesting vmid) is
executed. On the side of the requesting vmid an IUCV external interrupt indicates that the connection is
now complete.

Note: All connections allow the IUCV 'PRMDATA' option by default.

 Function SEVER

IUCV('SEVER',pathid,[userdata])

Result:

The function returns no data.

In the code of this function an IUCV SEVER (to sever a requested or already established path) is exe-
cuted. On the other side of the path an IUCV external interrupt indicates that the connection or connection
request has been severed. (Pending messages on this path are purged by IUCV.)

Note: The 'IPALL' option is not supported so each path must be severed separately.

 Functions to Manipulate IUCV Paths 13

 Function QUIESCE

IUCV('QUIESCE',pathid,[userdata])

Result:

The function returns no data.

In the code of this function an IUCV QUIESCE (to suspend incoming messages temporarily) is executed.
On the other side of the path an IUCV external interrupt indicates that the connection has been quiesced.

Note: The 'IPALL' option is not supported so each path must be quiesced separately.

 Function RESUME

IUCV('RESUME',pathid,[userdata])

Result:

The function returns no data.

In the code of this function an IUCV RESUME (to allow again messages on a quiesced path) is per-
formed. On the other side of the path an IUCV external interrupt indicates that the connection has been
resumed.

Note: The 'IPALL' option is not supported so each path must be resumed separately.

14 VM REXX IUCV Functions

Functions to Manipulate IUCV Messages

There are five functions to manipulate IUCV messages. On the source side, messages can be either sent
or purged. On the target side, messages can be either received or rejected. When the source side has
indicated that a reply is wanted, the target side can send a reply.

 Function SEND

IUCV('SEND',pathid,data,srccls,trgcls,[prio],[prm],[rpl,[rpllength]])

Result: msgid

The function returns the msgid (which is needed to purge a message or to map messages, message
complete interrupts, and replies).

In the code of this function an IUCV SEND (to send the message over a specified path) is executed. The
target vmid gets an external interrupt with a type 08 (pending priority message) or a type 09 (pending
nonpriority message).

Note: The length of a message or a reply is limited by RXIUCVFN to 100,000 bytes.

 Function PURGE

IUCV('PURGE',pathid,srccls,msgid)

Result:

The function returns no data.

In the code of this function an IUCV PURGE (to purge the message which has been sent) is executed. If
the message has not yet been received on the target side, a later RECEIVE will give a return code 9.

Note: A message not yet received uses storage on the senders side. To free (DMSFRET) this space in
case the target side is not willing to receive or reject the message, the clean way is to purge the message.

 Function RECEIVE

IUCV('RECEIVE',pathid,trgcls,[msglength])

Result: data

The function returns the message (or part of it if 'msglength' is too short).

 Functions to Manipulate IUCV Messages 15

In the code of this function an IUCV RECEIVE (to receive the message) is executed unless the message
is contained in the parameter list ('PRMDATA' option). Receiving a message in parts produces a return
code 5 until the whole message has been received. If the message is fully received (in one or more
receive steps) and if no reply is needed, the sender will be informed with a pending (non-)priority message
completion interrupt.

Note: This package does not allow the reception of messages with the same target class on the same
path out of order, but priority messages come ahead of all nonpriority messages.

 Function REJECT

IUCV('REJECT',pathid,trgcls)

Result:

The function returns no data.

In the code of this function an IUCV REJECT (to reject the message) is executed unless the message is
contained in the parameter list ('PRMDATA' option). When needed, an empty reply is generated by IUCV.

Note: The sender of a message cannot distinguish whether the message was received or rejected.

 Function REPLY

IUCV('REPLY',pathid,data,trgcls,[prio],[prm])

Result: msgid

The function returns the msgid.

In the code of this function an IUCV REPLY (to reply to a message) is executed. The sender gets an
external interrupt indicating message complete.

Note: The length of the reply may not exceed the length specified by the sender except when the reply is
sent with PRMDATA option. In this case, the length of the reply may not exceed 8.

16 VM REXX IUCV Functions

 Auxiliary Functions

There are two other functions needed to use this package. A query function gives the user some informa-
tion (e.g. describes the relevant content of the pending interrupt buffers) and a wait function allows the
user to enter a wait state.

 Function QUERY

IUCV('QUERY',qkeyword,[others])

Result: others

The parameter qkeyword is 'STATUS', 'CMSNAME', 'MVMID', 'VERSION', 'PATH', 'NEXT' or 'REPLY'. The
further input parameters "others" depend on the qkeyword, as shown below. The function returns data
dependent on the qkeyword.

Note: The query function is allowed before INIT.

IUCV('QUERY','STATUS')

Result: init error intstatus

where 'STATUS' is a keyword. The function returns the three items 'init', 'error' and 'intstatus' in the return
string.

IUCV('QUERY','CMSNAME')

Result: cmsname

where 'CMSNAME' is a keyword. The function returns the current CMSIUCV name.

IUCV('QUERY','MVMID')

Result: mvmid

where 'MVMID' is a keyword. The function returns the current monopolized vmid.

IUCV('QUERY','VERSION')

Result: name version date

where 'VERSION' is a keyword. The function returns name ('RXIUCVFN'), version (currently 2.00) and
date of the package.

 Auxiliary Functions 17

IUCV('QUERY','PATH',[pathid])

Result: pathlist | [pathid vmid]

where 'PATH' is a keyword. When no pathid is specified, the function returns the list of all current pathids.
Otherwise it returns the pathid and the corresponding vmid, when available.

IUCV('QUERY','NEXT',[type],[pathid],[msgcls])

Result: pending [type pathid others]

where 'NEXT' is a keyword. The function always returns the number of pending interrupt buffers and,
when available, type, pathid and other information depending on the type:

01 Pending connection:
msglim vmid prio userdata

02 Connection complete:
msglim userdata

03 Path has been severed:
userdata

04 Path has been quiesced:
userdata

05 Path has been resumed:
userdata

06 Pending priority message completion:
msgid srccls [rpl rpllength]

07 Pending nonpriority message completion:
msgid srccls [rpl rpllength]

08 Pending priority message:
msgid trgcls msglength [rpl rpllength]

09 Pending nonpriority message:
msgid trgcls msglength [rpl rpllength]

Note: As an output from QUERY-NEXT, 'userdata' is always contained in the last 18 bytes of the result
string. It consists of 16 bytes actual data enclosed by '<' and '>' to allow easier parsing in REXX. The
output 'prio' for a pending connection is either 'Pr' or 'Nonpr'. The result item 'rpl' is 'Reply'.

IUCV('QUERY','REPLY',pathid,[srccls])

Result: data

where 'REPLY' is a keyword. The function returns the reply data.

 Function WAIT

18 VM REXX IUCV Functions

IUCV('WAIT',seconds,[how])

Result: extint

The parameter 'how' indicates whether a wait state should be entered even when interrupt buffers are
already pending. Its value can either be a keyword or a number. As a number it indicates how many
interrupt buffers (at least) have to be pending to enter no wait state. The function returns a hexadecimal
string four characters in length describing the interrupt causing the end of the wait:

0000 Interrupt from the console (or other I/O interrupts)
0080 The timer expired
4000 IUCV interrupt buffer pending
00xx Other external interrupt type (CP command EXTERNAL xx)

For all other external interrupts the new external PSW is loaded, which was in EXTNPSW before it was
overwritten by the INIT function.

VM/SP uses the interval timer in the STIMER and TTIMER macros which results in a '0080' external inter-
rupt. RXIUCVFN version 1.11 also supports VM/XA where the clock comparator is used instead of the
interval timer resulting in '1004' external interrupts. However, an external interrupt of type '0080' is reported
also on VM/XA systems when the timer expires.

The parameter 'how' is used to control waiting in presence of pending IUCV interrupt buffers. A positive
number allows preventing already pending IUCV interrupt buffers from causing the WAIT function to termi-
nate. In other words, the REXX program can wait for the next IUCV event in spite of a number of pending
IUCV interrupt buffers, which it decided temporarily not to handle. This feature avoids a nonproductive
busy loop around the WAIT function. The following table shows whether the WAIT function immediately
terminates depending on 'pending' (as reported by the QUERY-NEXT function) and 'how':

how | NOWAIT WAIT n n+1

pending |

 � | No No No No

 n | Yes No Yes No

Note: The WAIT function terminates whenever an interrupt occurs in the virtual machine. Especially, if a
REXX-EXEC using RXIUCVFN with CMS IUCV runs together with another IUCV program using CMS
IUCV, WAIT also reports IUCV interrupts for the other program. In other word, WAIT may terminate with
the result '4000' while QUERY-NEXT does not show pending interrupts.

 Auxiliary Functions 19

20 VM REXX IUCV Functions

Support for REXXWAIT

REXXWAIT (also called REXX/WAIT) provides access to a central wait function. (See REXXWAIT
SCRIPT for more information.) When the REXXWAIT MODULE is available, RXIUCVFN supports its func-
tions. Especially, combinations of the WAIT and QUERY-NEXT functions of RXIUCVFN can be replaced
by calls of the WAIT function of REXXWAIT.

The REXX Function WAIT

WAIT(...,'IUCV' ['TYPE' type] ['PATH' pathid] ['MSGCLS' msgcls],...)

Result: rc 'IUCV' type pathid others

The function call waits for a pending interrupt buffer matching the type, pathid and message class informa-
tion specified (if no one is already pending) and returns a string similar to the result of the QUERY-NEXT
function, but with the keyword 'IUCV' as the first token and without the number of pending interrupt
buffers. Waiting for IUCV events can be restricted to a specific type, path and/or message class. The
keyword 'IUCV' comes from the way REXXWAIT reports events. More than one event for RXIUCVFN can
be entered in one call of the WAIT function:

res = WAIT('IUCV PATH 7','CONS','IUCV TYPE 3 PATH 5','IUCV','TIME 1�S')

is legal. Since REXXWAIT processes the events in the sequence entered, any IUCV event for pathid 7 is
reported to the REXX program before a console, a path 5 severed, or another IUCV event (assuming no
explicit defaults have been set using the SETVALUE function) when some of these events are already
pending. The timer-expired event comes last and is only reported when no other event is pending or has
happened before the timer has expired.

Note: Waiting for 'IUCV' events through REXXWAIT is only enabled when RXIUCVFN is initialized for
CMS IUCV using the method 'Cms' or 'Application' in the INIT function. However, 'Application' cannot be
used together with a monopolized vmid due to the way RXIUCVFN resolves the incompatibility between
CMS IUCV and PVM IUCV.

In addition to the values defined by REXXWAIT, the function returns the following return codes:

10 No pending interrupt buffer with buffer pool overflow

When waiting is restricted to specific type, pathid or message class, no corresponding interrupt buffer is
pending, but IUCV interrupts are disabled because of buffer pool overflow, the function terminates with a
return code 10 to make the program aware of this fact. (This may not always be what a REXX pro-
grammer expects. A call of the form WAIT('IUCV PATH 7','IUCV') may terminate with a return code 10
because of the first argument and despite the second argument.)

The REXX Function SETVALUE

SETVALUE('IUCV' ['TYPE' type] ['PATH' pathid] ['MSGCLS' msgcls])

Result: rc olddefaults

 Support for REXXWAIT 21

This function call sets the default type, pathid and/or message class for waiting on IUCV events. (In a
REXX program, the result string without 'rc' can directly be used to reset the defaults before termination.)
Initially, the defaults are 'TYPE * PATH * MSGCLS *'.

The REXX Function QUERYVALUE

QUERYVALUE('IUCV VERSION')

Result: rc name version date

The function call returns the same result as the QUERY-VERSION function and can be used instead of it.

QUERYVALUE('IUCV DEFAULTS')

Result: rc defaults

This function call returns the current default settings for type, pathid and message class.

The REXX Function RESETVALUE

RESETVALUE('IUCV')

Result: rc

This function call resets the defaults for type, pathid and message class, and returns no data.

22 VM REXX IUCV Functions

 Examples

To give potential users an idea of how to use the functions of this package, a sample of an IUCV commu-
nications pattern and two examples are attached. The first example demonstrates how to make use of
IUCV in a terminal session, while the second example shows a REXX-EXEC making use of IUCV to
receive VM messages from RSCS through a path with the CP service '*MSG'.

IUCV Communications Pattern

Figure 3 shows a possible communication trace in visual form involving a server and two clients. The two
clients connect to the server and send data.

┌─────────┐ ┌─────────┐ ┌─────────┐

 │SNDSAMPL │ │RCVSAMPL │ │SNDSAMPL │

 │ Client │ │ Server │ │ Client │

│ 1 │ │ │ │ 2 │

└─────────┘ └─────────┘ └─────────┘

1 . . .

 2 ─CONNECT─────────────────────────	 .

 3
──────────────────────────ACCEPT─ .

 4 ─Message───────────┐ . .

5 . │ . ┌───────────CONNECT─

6 ─Message──────────┐│ . │ .

 7 . │└─────────────	 │ .

 8 . ┌───┼──Msg Complete─ │ .

 9 . │ │
─────────────┘ .

1� . │ │ ─ACCEPT────────────┐ .

11 . │ └──────────────	 │ .

12 . │┌─────Msg Complete─ │ .

13 . ││ . └─────────────	

14 . ││ . ┌───────────Message─

15 . ││ . │┌──────────Message─

16 . ││ . ││┌─────────Message─

17
─────────────┘│ . │││ .

18
──────────────┘ . │││ .

19 ─SEVER─────────────┐ . │││ .

2� . │
─────────────┘││ .

21 . │ ─Msg Complete──┼┼──┐ .

22 . │
──────────────┘│ │ .

23 . │ ─Msg Complete───┼─┐│ .

24 . │
───────────────┘ ││ .

25 . │ ─Msg Complete────┐││ .

26 . └─────────────	 │││ .

27 . . ││└─────────────	

28 . . │└──────────────	

29 . . └───────────────	

Figure 3. Sample IUCV communications pattern

In line 2 and 3, the path between client 1 and the server gets established with the two functions
CONNECT and ACCEPT. The arbitrary 'Message' (e.g. in line 4) gets sent through the SEND function,
and the 'Msg Complete' (e.g. in line 8) gets sent when the server issues the RECEIVE function (for
one-way communications) or the REPLY function (for two-way communications). When client 1 is done, it
issues the SEVER function. Also the server will issue the SEVER function to completely release the path,
but this is not shown because it does not get forwarded to the client. (At the end of the trace, the path
between client 2 and the server is still established.)

 Examples 23

Sample of an Interactive Session

Using the following small REXX-EXEC 'IUCV'

/� IUCV ---�/

trace o

parse arg argstring

interpret 'response =' argstring

say response

exit rc

the functions of the package can be used to work interactively with IUCV. In the following session both
sides of the IUCV connection were played on the same userid. To distinguish these two sides the linear
session is structured with horizontal offsets (INIT and TERM are somewhere in between).

 iucv iucv(init,2)

 2

 R;

iucv iucv(connect,'RFH',255,'PRIO')

� 255

R;

 iucv iucv(query,next)

1 1 1 255 RFH Pr < >

 R;

 iucv iucv(accept,1,255,'PRIO')

 1 255

 R;

iucv iucv(query,next)

1 2 � 255 < >

R;

iucv iucv(send,�,'Hello',2,3)

23�4

R;

 iucv iucv(query,next)

1 9 1 23�4 3 5

 R;

 iucv iucv(receive,1,3)

 Hello

 R;

iucv iucv(query,next)

1 7 � 23�4 2

R;

iucv iucv(query,next)

�

R;

iucv iucv(sever,�)

R;

 iucv iucv(query,next)

1 3 1 < >

 R;

 iucv iucv(query,next)

 �

 R;

 iucv iucv(sever,1)

 R;

 iucv iucv(term)

24 VM REXX IUCV Functions

 R;

This sample session may give potential users the idea that IUCV can be used very easily with that
package. But one should not forget that IUCV connections produce asynchronous events and we poor
mortals are trained to think sequentially and not in parallel.

Sample CMS IUCV Session

The connection setup for an interactive IUCV session using CMS IUCV is shown. The REXX-EXEC 'IUCV'
has been modified to redisplay the argument string, and argument string and result string are both dis-
played with a time stamp in front.

iucv iucv('INIT',1�,'CMS','SERVER ')

�9:27:�4 iucv('INIT',1�,'CMS','SERVER ')

�9:27:�4 1�

R;

 iucv iucv('INIT',1,'CMS','CLIENT ')

 �9:27:22 iucv('INIT',1,'CMS','CLIENT ')

 �9:27:22 1

 R;

iucv iucv('WAIT',36��)

�9:27:34 iucv('WAIT',36��)

 iucv iucv('CONNECT','RFH',255,'N','SERVER ')

 �9:27:53 iucv('CONNECT','RFH',255,'N','SERVER ')

�9:27:53 � 255

 R;

�9:27:53 4���

R;

iucv iucv('QUERY','NEXT')

�9:28:�9 iucv('QUERY','NEXT')

�9:28:�9 1 1 � 255 RFH1 Nonpr <SERVER>

R;

 iucv iucv('WAIT',36��)

 �9:28:2� iucv('WAIT',36��)

iucv iucv('ACCEPT',�,255,'N','Anything')

�9:28:57 iucv('ACCEPT',�,255,'N','Anything')

�9:28:57 � 255

R;

 �9:28:57 4���

 R;

 iucv iucv('QUERY','NEXT')

 �9:29:�8 iucv('QUERY','NEXT')

�9:29:�8 1 2 � 255 <Anything........>

 R;

The userid 'RFH' initializes CMS IUCV under the name 'SERVER'. The client userid 'RFH1' also uses
CMS IUCV and initializes under the name 'CLIENT'. To start a connection with the server, the client calls
CONNECT with the servers CMSNAME (i.e. 'SERVER') in the first eight bytes of the user data field.

Note: RXIUCVFN pads the user data field with X'00'. Therefore, the CMSNAME of the server must be
padded with blanks in CONNECT. Otherwise, CMS IUCV severs the connection request because
'SERVER' padded with blanks and 'SERVER' padded with X'00' is not the same.

 Examples 25

The REXX-EXEC QUSER

The well-known CMS EXEC 'NQUERY' can be used to query the status of one or more computer users on
the same computer or on other computers (VM installations only) connected via the RSCS network. The
answer is displayed on the invoker's terminal as a VM message. The following REXX-EXEC receives
these messages via an IUCV connection with the CP service '*MSG' and allows the answer to be stacked
for use in other EXEC's. (Only the query of the status of one computer user is supported and no use of
the nickname facility is made.)

/� QUSER --�/

trace o

parse arg argstring

argstring = strip(argstring)

if substr(argstring,1,1) = '?' then do

say 'Use the "QUSER" command to query the status of a computer user'

say 'on your computer or on other computers that are connected to'

say 'your computer via the RSCS network. The format of the command'

 say 'is: '

say ' QUSER userid <AT <nodeid>> <(<Timeout timeout> <STack><)>>'

say ' Default: yournode 1� (seconds) '

 exit 1��

end

/� Who am I, anyway? �/

address command 'IDENTIFY (LIFO'

parse upper pull userid . locnode . rscsid .

/� Split arguments into parameters and options �/

parse upper var argstring parameters '(' options ')' rest

/� Parse the parameters �/

parse var parameters quser at qnode rest

if quser='' then call error 24 'No names specified'

if at¬='AT' & at¬='' then call error 24 'Invalid parameters specified'

if rest¬='' then call error 24 'Invalid parameters specified'

if qnode='' then qnode = locnode

if length(quser)>8 then call error 24 'Invalid user' quser

if length(qnode)>8 then call error 24 'Invalid node' qnode

/� Parse the options �/

timeout = 1�

stack = �

do forever

parse var options token options

 select

when token='' then leave

when abbrev('STACK',token,2)=1 then stack = 1

when abbrev('TIMEOUT',token,1)=1 then do

timeout_error = '2� Invalid timeout'

parse var options timeout options

if datatype(timeout)¬='NUM' then call error timeout_error

timeout = format(timeout,,�)

if timeout<1 | timeout > 36�� then call error timeout_error

 end

otherwise call error 2� 'Invalid option'

26 VM REXX IUCV Functions

 end

end

/� Initialize the response line etc. �/

line = ''

others = �

/� Load RXIUCVFN and initialize IUCV if needed �/

if qnode¬=locnode then do

address command 'RXIUCVFN TEST'

 notloaded=rc

 select

when notloaded=� then nop

when notloaded=1 then address command 'RXIUCVFN LOAD'

otherwise call error 45 'Problems with loading RXIUCVFN'

 end

iucverror = �

iucvresponse = IUCV('QUERY','STATUS')

if rc¬=� then iucverror = 1

if ¬iucverror then do

parse upper var iucvresponse init .

 select

when (init='YES' | init='CMS') then iucvinit = 1

when init='NO' then do

iucvinit = �

iucvresponse = IUCV('INITIALIZE',1)

 end

otherwise iucverror = 1

 end

 end

if ¬iucverror then do

iucvresponse = IUCV('CONNECT','�MSG',255)

if rc=� then parse upper var iucvresponse pathid .

else iucverror = 1

 end

end

/� Make the appropriate query for a local request �/

if qnode=locnode then do

address command 'MAKEBUF'

address command 'EXECIO 1 CP (LIFO STRING QUERY USER' quser

if queued()>� then parse pull line

address command 'DROPBUF'

end

/� Make the appropriate query for a remote request �/

if qnode¬=locnode then do

if ¬iucverror then do

address command 'MAKEBUF'

address command 'EXECIO 1 CP (LIFO STRING QUERY SET'

if queued()>� then parse pull msg savemsg .

if msg¬='MSG' then savemsg = 'ON'

savemsg = left(savemsg,4)

address command 'DROPBUF'

address command 'CP SET MSG IUCV'

address command 'CP SMSG' rscsid 'CMD' qnode 'CPQ USER' quser

found = �

wait = 1

 Examples 27

do while(¬found & ¬iucverror)

extint = IUCV('WAIT',timeout,wait)

if rc¬=� then iucverror = 1

if extint¬='4���' then leave

iucvresponse = IUCV('QUERY','NEXT',,pathid,1)

parse upper var iucvresponse cpending ctype .

if cpending>� then do

 select

when ctype=2 then nop

when ctype=3 then iucverror = 1

when ctype=9 then do

fromuser = IUCV('RECEIVE',pathid,1,8)

if rc¬=5 then iucverror = 1

fromuser = strip(fromuser)

message = IUCV('RECEIVE',pathid,1)

if rc¬=� then iucverror = 1

message = strip(message)

if fromuser=rscsid then do

parse var message text rest

if left(text,6)='DMTRGX' then message = rest

Parse var message next rest

if next='FROM' then do

parse var rest fromid rest

parse var fromid msgnode '(' msguser '):' etc

if msguser¬='' then do

fromuser = msguser 'at' msgnode

message = rest

 end

 end

 end

else fromuser = fromuser 'at' locnode

if fromuser=rscsid then found = 1

parse var message . ' CPQ: ' line

if fromuser¬=rscsid | line='' then do

say 'Message from' fromuser':'

 say message

others = 1

 end

 end

 otherwise nop

 end

 end

wait = IUCV('QUERY','NEXT',�) + 1 /� no valid type �/

 end

address command 'CP SET MSG' savemsg

do forever /� because we do not want to loose anything �/

iucvresponse = IUCV('QUERY','NEXT',9,pathid,1)

parse upper var iucvresponse cpending ctype .

if ctype='' then leave

fromuser = IUCV('RECEIVE',pathid,1,8)

fromuser = strip(fromuser)

message = IUCV('RECEIVE',pathid,1)

message = strip(message)

say 'Message from' fromuser':'

 say message

others = 1

 end

28 VM REXX IUCV Functions

 end

end

/� Terminate IUCV and unload RXIUCVFN if needed �/

if qnode¬=locnode then do

if ¬iucverror then iucvresponse = IUCV('SEVER',pathid)

if ¬iucverror & ¬iucvinit then iucvresponse = IUCV('TERM')

if notloaded then address command 'NUCXDROP RXIUCVFN'

if iucverror then call error 5� 'IUCV problems'

end

/� Give the user an answer �/

parse var line text rest

if left(text,6)='DMKCQY' then line = rest

if others then say ' '

if qnode¬=locnode & line='' then do

say 'The appropriate answer may arrive later as a message!'

 select

when extint='4���' then call error 6� 'No correct message found'

when extint='��8�' then call error 6� 'Timeout occurred'

otherwise call error 6� 'Other external interrupt stopped query'

 end

end

if stack then queue '�' line

else say line

exit �

/� Error message and exit routine �/

error: parse arg return_code error_message

say '��� Error ���' error_message

 exit return_code

Many local changes in CP and RSCS programs make the life of such EXEC's very difficult. RSCS mes-
sages describing an event (such as 'node xyz not connected') can vary from node to node. Another
problem of the above EXEC is the fact that other VM messages can arrive while the EXEC expects one
specific VM message from RSCS so that a 'sophisticated' analysis is needed.

 Further Examples

The two REXX programs RISERVER EXEC and RICLIENT EXEC provided with the REXXIUCV package
show a simple client-server application. The server code (RISERVER) sends information to as many
clients (RICLIENT) as connect. The server accepts connection requests as long as there is a free path to
use. The clients connected at the same time are serviced in parallel.

The REXX Handbook by Gabriel Goldberg and Philip H. Smith III (McGraw-Hill, and IBM form number
SB20-0020) contains a chapter about REXXIUCV in which another simple client-server application is pre-
sented. Especially, robustness and economical resource use are discussed.

 Examples 29

30 VM REXX IUCV Functions

 Index

A
ACCEPT function 5, 13

C
CMS IUCV 1, 9, 11, 17, 21, 25
CONNECT function 5, 13
CP directory 1

IUCV 7
MAXCONN 7, 11
MSGLIM 7

I
INIT function 5, 11
interrupt buffers 8, 17, 18, 19
IUCV support 1

*MSG service 9, 26
ACCEPT 13
CONNECT 13
DCLBFR 11
DESCRIBE 9
environment 11
internode 9
messages 15
paths 13
PRMDATA option 8
PURGE 15
PVM 9, 21
QUERY 9, 11
QUIESCE 14
RECEIVE 15
REJECT 16
REPLY 16
RESUME 14
RTRVBFR 11
SEND 15
SETCMASK 9
SETMASK 9
SEVER 13
TESTCMPL 9
TESTMSG 9

P
PURGE function 5, 15
PVM IUCV 9, 21

Q
QUERY function 5, 17

QUIESCE function 5, 13

R
RECEIVE function 5, 15
REJECT function 5, 16
REPLY function 5, 16
RESUME function 5, 14
REXXWAIT 21
RXIUCVFN 1—29

accept path 13
availability 1
connect path 13
examples 23
function syntax 3
initialize 11
installing 1
interactive session 24, 25
IUCV EXEC 24
purge message 15
quiesce path 13
QUSER EXEC 26
receive message 15
reject message 15
remarks 7
reply message 15
resume path 13
return codes 6
send message 15
sever path 13
terminate 11

S
SEND function 5, 15
SEVER function 5, 13

T
TERM function 5, 11

W
WAIT function 5, 18

 Index 31

IBM

Printed in U.S.A.

	Introduction
	Function Syntax
	The REXX Function IUCV
	Return Codes of the Functions
	General Remarks

	Functions to Activate or Deactivate IUCV
	Function INIT
	Function TERM

	Functions to Manipulate IUCV Paths
	Function CONNECT
	Function ACCEPT
	Function SEVER
	Function QUIESCE
	Function RESUME

	Functions to Manipulate IUCV Messages
	Function SEND
	Function PURGE
	Function RECEIVE
	Function REJECT
	Function REPLY

	Auxiliary Functions
	Function QUERY
	Function WAIT

	Support for REXXWAIT
	The REXX Function WAIT
	The REXX Function SETVALUE
	The REXX Function QUERYVALUE
	The REXX Function RESETVALUE

	Examples
	IUCV Communications Pattern
	Sample of an Interactive Session
	Sample CMS IUCV Session
	The REXX-EXEC QUSER
	Further Examples

	Index

