317

Compiling Process Graphs into Executable Code

Rainer Hauser and Jana Koehler

IBM Zurich Research Laboratory
CH-8803 Riischlikon, Switzerland
{rfh,koe}@zurich.ibm.com
http://www.zurich.ibm.com/csc/ebizz/bpia.html

Abstract. Model-driven architecture envisions a paradigm shift as dra-
matic as the one from low-level assembler languages to high-level pro-
gramming languages. In order for this vision to become reality, algo-
rithms are needed that compile models of software systems into deploy-
able and executable implementations. This paper discusses two algo-
rithms that provide such transformations for process graph models in a
business process or workflow environment and produce executable pro-
grams based on Web services and orchestration languages. The reverse
transformations back from executable programs to process graphs are
also described.

1 Introduction

The model-driven architecture (MDA) initiative introduced by the Object Man-
agement Group (OMG) [1] is slowly becoming mature and is being given appro-
priate tool support [2]. However, there is still a long way to go before complex
software systems can be completely described as models and deployed automat-
ically [3]. In this respect, software engineering is far behind hardware develop-
ment.

Model-driven development (MDD) for arbitrary software systems is still not
possible, and — even if it were — the danger is that creating the complete set of
models for a complex system may turn out to be more difficult than realizing
it with traditional programming methods. Thus, MDD may not be considered
worth the effort despite potential savings of maintenance costs. Applied to the
field of business process engineering, the problems of MDD are simpler than
those for general software systems thanks to the componentization and com-
position structure where the parts that are difficult to describe in models have
already been implemented by other means. The basic building blocks for business
processes (i.e., the components) are either services directly implemented as Web
services or legacy systems wrapped as a Web service [4]. These building blocks
are combined to form complex business logic (i.e., the composition) using orches-
tration languages such as BPEL4AWS [5] and datatype definitions specified using
WSDL [6]. Therefore, applying MDD to business processes means modeling a
complex business process in terms of available Web services and transforming
this model (or set of models) into executable and deployable orchestrations.

G. Karsai and E. Visser (Eds.): GPCE 2004, LNCS 3286, pp. 317-336, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.3
 Optimize For Fast Web View: No
 Embed Thumbnails: No
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [2400 2400] dpi
 Paper Size: [439.37 666.142] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 1200 dpi
 Downsampling For Images Above: 1800 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Maximum
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 1200 dpi
 Downsampling For Images Above: 2400 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Maximum
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 2400 dpi
 Downsampling For Images Above: 3600 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Cancel Job
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Leave Color Unchanged
 Intent: Default
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: Yes
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: Yes
 Log DSC Warnings: No
 Resize Page and Center Artwork for EPS Files: Yes
 Preserve EPS Information From DSC: Yes
 Preserve OPI Comments: No
 Preserve Document Information From DSC: Yes

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 2.0
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 1200
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 1200
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [2400 2400]
>> setpagedevice

318 Rainer Hauser and Jana Koehler

Complete business process models consist of a process model to describe
the execution logic, an information model for the datatypes used in the process
model, an organizational model with a role or authorization model, and possi-
bly other models. The compilation from a model describing a complex business
process to a deployable BPEL4WS implementation has to transform the process
model into BPEL4WS activities, the role or authorization model into BPEL4WS
partners, and the information model into BPEL4WS variables specified using
WSDL. In this paper, we will concentrate on transforming the process model’s
control flow into BPEL4WS activities. We specify process models using a subset
of UML 2.0 activity diagrams [7], which is sufficiently rich to allow concurrency
and arbitrary cycles in the control flow. For the orchestration, we simplified the
BPEL4WS specification to contain only those elements needed to describe the
execution logic extracted from the process model. UML 2.0 activity diagrams
and BPEL4WS have been selected because both are widely accepted, de-facto
standards.

UML activity diagrams (and most of the other modeling languages for busi-
ness processes) allow specification of cyclic behavior. However, these cycles are
unstructured, and BPEL4WS only allows structured cycles in the form of while-
loops. Therefore, when going from the UML process model to the BPEL4WS
implementation, unstructured cycles have to be resolved into structured cycles.
Our discussion traces such transformations of process graphs into executable
code, and we present two algorithms in detail. We also show the transformation
in the other direction, which is important for reconciliation if the process graph
and the executable code can be modified independently?.

This paper is structured as follows: We define the subset of UML 2.0 activity
diagrams used to model business processes (process graphs) in Section 2, and
the simplified BPEL4WS used to describe the orchestration (executable code) in
Section 3. We discuss in Sections 4 and 5 the transformation (compilation) from
process graphs into executable code and the transformation (decompilation) of
executable code back into a process graph, respectively. Finally, we conclude the
paper in Section 6 with a discussion of this approach and an outlook.

2 Process Graph Model

Several modeling languages for business processes (such as BPMN [8]) have
been proposed. We selected a subset of the UML 2.0 activity diagram meta-
model [7] as the basis for this work. (BPMN and UML 2.0 activity diagrams
are similar and may converge in the future [9].) In order to remove redundancy

1Tt is not yet clear how important reconciliation in MDA/MDD will turn out to
be. Software engineers these days rarely look at the machine code produced by
the compiler of a high-level programming language. When MDA /MDD has become
reality and the compilation of models into deployable code has become mature,
there will be no need to modify the deployed code except through recompilation and
redeployment. However, there may still be a need for decompiling deployed code into
a business process model.

Compiling Process Graphs into Executable Code 319

and architectural elements not needed for modeling the control flow of a business
process or workflow, we restrict the UML 2.0 activity diagrams to a subset shown
in Figure 1.

NamedElement

@ name : Sting

?
| |

ActivityNode | 1 +target +incoming O.n ActivityE dge
g guard : String = true

ZF 1 + source + outgoing O.n A
| |

ExecutableNode ControlNode ControlFlow
@ action : String Z}
[| | | | |
InitialNode DecisionNode MergeNode ForkNode JoinNode FinalNode

Fig. 1. Abstract syntax of process graph models.

According to the abstract syntax, a process graph consists of nodes and edges
represented as instances of the abstract classes ActivityNode and ActivityEdge.
A node is either an ExecutableNode or a ControlNode. An executable node
is supposed to perform an action represented as a string that is not specified
further. An edge can only be a ControlFlow whose guard is also represented
as a string. The relation between nodes and edges is modeled as bidirectional
associations. A node can have multiple incoming and outgoing edges, but an edge
has always exactly one source and one target node. The start node of a process
graph is an InitialNode, and the end node is a FinalNode. The XOR-splits and
-joins (alternatives) are represented as DecisionNodes and MergeNodes. The
AND-splits and -joins (concurrency) are modeled as ForkNodes and JoinNodes.

Basically, a process graph is a connected, directed graph with a single start
and a single end node. Such a graph is called reducible if (informally speaking)
“there are no jumps into the middle of loops from outside” [10]. A node n; is said
to dominate a node nq if all paths from the start node to ne go through n; [10].
A fork-join pair is properly nested if (again informally speaking) there are no
jumps into and out of the corresponding concurrent threads nor any interactions
between the threads?. A formal definition will be given in Section 4.4.

For a process graph to be valid, there are further well-formedness constraints
not shown in the class diagram:

2 It is not possible to design more sophisticated synchronization mechanisms between
threads in this simplified model.

320 Rainer Hauser and Jana Koehler

1. The process graph is finite.

2. A process graph must have exactly one InitialNode and one FinalNode. (A

process graph has a single entry and a single exit.)

A process graph and every thread contains at least one ExecutableNode.

4. For every node, there is a path from the start node to the end node going
through this node. (This avoids unreachable areas of the process graph, which
are detectable through static analysis of the graph.)

5. All nodes except DecisionNodes, ForkNodes and FinalNodes have exactly
one outgoing edge. DecisionNodes and ForkNodes have at least two outgoing
edges, and FinalNodes have no outgoing edge.

6. All nodes except MergeNodes, JoinNodes and InitialNodes have exactly one
incoming edge. MergeNodes and JoinNodes have at least two incoming edges,
and InitialNodes have no incoming edge.

7. All ExecutionNodes have a unique name, which can be used to identify a
specific ExecutionNode.

8. The guards for all nodes except DecisionNode are true. If n edges leave a
DecisionNode with expry,...,expr, as guards, then
expri Vexpra V...V expr, = true complete (PM1)
expr; A expr; = false (for i # j) deterministic (PM2)
must hold?.

9. All fork-join pairs are properly nested (see Section 4.4).

@

When transforming a process graph with the algorithms introduced below, these
constraints can be checked automatically except for PM1 and PM2 in Con-
straint 8 which would require domain knowledge of the model’s data types*.

The above list of constraints expresses a set of necessary conditions for a
process graph to be valid, but the list is not sufficient. It is still possible to
define valid process graphs that do not make sense.

Figure 2 shows the simple and artificially created example of a process graph,
which will be used throughout this paper, because it contains all the features
needed to explain the transformation algorithms. It introduces at the same time
the graphical notation for the types of nodes in UML 2.0 activity diagrams
used in this paper. The InitialNode on the left side is connected to a Fork-
Node, and the corresponding JoinNode on the right side leads to the FinalNode.
There are two threads between fork and join. The upper one is more complex
and contains DecisionNodes with guards (e.g., exprSA) and MergeNodes. The
ExecutableNode A is contained in a cycle. The lower thread is a simple sequence
of the two ExecutableNodes C and D. If exprSB = —exprSA is true (to enforce
PM1 and PM2), this example process graph is valid according to the above
well-formedness constraints. There is exactly one start and one end node, the

3 We also assume that each expr; is sometimes true in order to avoid areas of the
process graph whose unreachability cannot solely be detected by static analysis of
the process graph.

4 We can always enforce PM1 by adding an ‘else’-edge going to the FinalNode (or
its corresponding MergeNode), and PM2 by modifying the guards with expr, =
expr; N\ —mexpri A ... N\ —mexrpri_i.

Compiling Process Graphs into Executable Code 321

Fig. 2. Process graph example.

fork-join pair is properly nested, and the two sequential threads satisfy the other
constraints.

3 Executable Code Model

The orchestration language BPELAWS [5] describes the execution logic for busi-
ness processes composed of Web services. Figure 3 shows the simplified subset
used for the purpose of demonstrating compilation and decompilation.

NamedElement
@ name . Sting

| L | |

Process +initiste 1 ExecutionElement Variahle
@ walue : String
.n
+ ownedElements l—uwnedEIement . 1
+ variahle
| [[[b] T]
Sequence Flow Invoke Switch While Assign

BS

@ call: String g condition : String [| gf value : String
1 j\j ca

Case

@ condition : String

Fig. 3. Abstract syntax of executable code models.

A model contains a Process with one ExecutionElement initiating the execu-
tion. ExecutionElements can be Sequences (sequential), Flows (concurrent), the
structural elements Switch (case-statement) and While (loop), Assign (variable
assignment) and Invoke. The Invoke is merely a placeholder for synchronous
and asynchronous Web service invocations with an action attribute (call). For

322 Rainer Hauser and Jana Koehler

<process>
<flow>
<sequence>
<assign ’SA:=exprSA’ />
<assign ’SB:=exprSB’ />
<switch>
<case condition= ’SB’>
<sequence>
<invoke B />
<assign ’BA:=exprBA’ />
</sequence>
</case>
</switch>
<switch>
<case condition= ’SA | (SB & BA)’>
<sequence>
<assign ’loopA:=true’ />
<while condition= ’loopA’>
<invoke A />
<assign ’AA:=exprAA’ />
<assign ’loopA:=AA’ />
</while>
</sequence>
</case>
</switch>
</sequence>
<sequence>
<invoke C />
<invoke D />
</sequence>
</flow>
</process>

Fig. 4. Executable code example.

simplicity, we do not allow the BPEL4AWS ‘otherwise’ element in a Switch but
assume that all cases are coded as Case elements fulfilling similar constraints as
PM1 and PM2 for process graphs.

For a more concise textual representation (concrete syntax) of this simplified
BPEL4WS, we use the XML representation of BPEL4AWS with less verbose as-
signments instead of copy specifications [5], and we encode negation, disjunction
and conjunction in the conditions with “I”, “/” and “&”, respectively. We also
assume that the corresponding WSDL definitions have been defined.

A possible transformation of the example in Figure 2 is shown in Figure 4.
Using the transformation algorithms described in Section 4, this BPEL4WS
skeleton code can be derived automatically from the given process graph. The
resulting BPEL4AWS contains a Flow with two Sequences representing the two
concurrent threads. The upper thread contains two switch elements, where the
second one consists of a while-loop. The second thread contains simply two
invocations called one after the other without further control logic.

4 Compilation of Process Graphs

Among the model transformation approaches [11], graph transformation meth-
ods are quite popular [12,13]. Work on signal flow graph compilers is relevant as

Compiling Process Graphs into Executable Code 323

well [14]. The problem we need to solve can — independent of the actual transfor-
mation approach — use techniques from compiler theory [15] because a sequential
process graph can be compiled into a program with gotos. After this initial trans-
formation, goto-elimination methods for sequential programming languages can
be applied. We look at non-concurrent process parts first and examine concur-
rency later.

4.1 Initial Transformation for a Sequential Part

The general pattern of an activity in a sequential part of a process graph (either
a completely sequential process graph or a sequential thread) is — as shown in
Figure 5 — a MergeNode followed by an ExecutableNode followed by a Deci-
sionNode, where the MergeNode collects the incoming edges (XOR-join), and
the DecisionNode routes the control flow to the next activity (XOR-split). How-
ever, MergeNodes with only one incoming edge and DecisionNodes with only one
outgoing edge are eliminated. (The lower thread in Figure 2, for example, shows
the two activities C and D without MergeNodes and DecisionNodes.) Similarly,
the InitialNode is followed by a DecisionNode, and the FinalNode is preceeded
by a MergeNode. InitialNodes and FinalNodes (or the ForkNodes and JoinNodes
as the start and end nodes of a thread) can be interpreted as no-op action.

O—=(A =

Fig. 5. General pattern of an activity.

Thus, a sequential process graph (or a sequential thread) can be translated
into an initial program with guarded gotos for the edges using the rules:

1. A MergeNode — even if eliminated — becomes a label in the program. (Es-
pecially, the always missing MergeNode of the start node — interpreted as a
no-op action — becomes the start label of the program.)

2. A node representing an action — usually an ExecutionNode — becomes an
executable action that is not further specified. (In particular, the start node
becomes a no-op action, and the end node an exit action.)

3. A DecisionNode — even if eliminated — becomes a set of guarded gotos (one
per edge).

If a MergeNode is directly connected to a DecisionNode, we also insert a no-op
action.

The result of this initial transformation applied to the upper thread of Fig-
ure 2 is shown in Figure 6 in a simple programming language® and with the
labels S and T used for the invisible start and end node of the thread.

5 Instead of extending the executable code model with a goto ExecutionElement or
defining an intermediate model, we use a familiar but not formally specified pro-
gramming language with simple if-statements and repeat-while-loops instead of the
more complicated switch-construct and the while-loop in BPEL4WS.

324 Rainer Hauser and Jana Koehler

S: if (exprSA) goto A; // left-most DecisionNode
if (exprSB) goto B;
A: invoke A; // MergeNode and ExecutionNode A
if (exprAA) goto A; // DecisionNode after A
if (lexprAA) goto T; // instead of "else goto T;"
B: invoke B; // ExecutionNode B
if (exprBA) goto A; // DecisionNode after B
if (!exprBA) goto T; // instead of "else goto T;"
T: exit; // right-most MergeNode

Fig. 6. Initial transformation result.

This initial program consists of blocks, where a block starts with a label and
ends either before the next label or at the program’s end. Because of PM1, there
is no implicit flow of control from one block to the next, and the blocks (except
for the first one) can be arbitrarily reordered. Because of PM2, the order of
the guarded goto-statements in a block is irrelevant, and they can be arbitrarily
reordered as well®. Both properties are important as will be shown below.

4.2 Finite State Machine Transformation for a Sequential Part

There is a straightforward translation of this initial program into a single loop,
which basically transforms the sequential process graph into a finite state ma-
chine. Figure 7 shows the result for the upper thread of the example shown in
Figure 2. The gotos become assignments to the variable nextNode, the initial
block becomes the initialization, the terminal block dissolves into an implicit
exit at the program end, and the other blocks become cases in the switch.

This compilation method, which obviously could be directly applied to a se-
quential process graph instead of going through the initial transformation first,
has the advantage that it is easy to implement. However, it has two disadvan-
tages. First, performance is an issue for process graphs with a large number of
nodes because the switch testing of which node comes next has to test n/2 guards
on average if n is the number of nodes in the graph. Second, the program does
not show the inherent program structure with the different phases of a business
process, the nesting of cyclic activities and the order of sequential activities”. For

6 Without PM2, there are three semantics possible for the DecisionNode: (1) The
guards are tested in a certain order, and the first true one gets control. (2) The
set of guards is executed nondeterministically (e.g., as a set of Dijkstra’s guarded
commands). (3) All edges whose guards are enabled are followed concurrently. Note
that for the second case, the initial transformation preserves the behavior if we
interpret the set of guarded gotos in a block as a set of Dijkstra’s guarded commands.
It is rather subjective to determine which program structure best represents a process
graph. However, we believe that business processes are often designed as a sequence
of various phases. A shopping application, for example, starts with an authentication
phase, continues with a product configuration and selection phase, and ends with
a negotiation of terms and conditions. These phases should be made visible in the
executable code model and should not be merged into a single loop.

Compiling Process Graphs into Executable Code 325

<sequence>
<switch>
<case condition= ’exprSA’>
<assign ’nextNode:=A’ />
</case>
<case condition= ’exprSB’>
<assign ’nextNode:=B’ />
</case>
</switch>
<while condition= ’nextNode!=T’>
<switch>
<case condition= ’nextNode=A’>
<sequence>
<invoke A />
<switch>
<case condition= ’exprAA’>
<assign ’nextNode:=A’ />
</case>
<case condition= ’!exprAA’>
<assign ’nextNode:=T’ />
</case>
</switch>
</sequence>
</case>
<case condition= ’nextNode=B’>
<sequence>
<invoke B />
<switch>
<case condition= ’exprBA’>
<assign ’nextNode:=A’ />
</case>
<case condition= ’!exprBA’>
<assign ’nextNode:=T’ />
</case>
</switch>
</sequence>
</case>
</switch>
</while>
</sequence>

Fig. 7. Finite state machine transformation result.

these two reasons we do not consider the result of this transformation method
satisfactory. Note, however, that this transformation would allow nondetermin-
ism to be preserved if we relax PM2 and if the underlying platform supports
nondeterminism (e.g., in the form of Dijkstra’s guarded commands).

4.3 Goto-Elimination Method for a Sequential Part

The method by Ammarguellat [16] for eliminating gotos in program languages to
achieve single-entry, single-exit while-loops has two main steps called “derecursi-
vation” for removal of self-references (self-loops) and “substitution” for merging
two activities into one activity. Note that these two steps correspond to the T1
and T2 rule, respectively, in the T1-T2 analysis [17]. The substitution step may
need “if-distribution” and “factorization” as additional steps at the end. We
adapted this method for process graphs and describe the different steps in the
following.

326 Rainer Hauser and Jana Koehler

Pre-calculation: We start from the initial program and introduce additional
variables in order to save the current state of the expressions. The reason for
this step is explained below. The input to this step (and the other steps later
on) is shown on the left, the output on the right:

L: invoke L; L: invoke L;
if (exprLM1) goto Mi; if (exprLM1) nextNodeFromL:=M1;
if (exprLMm) goto Mm; if (exprLMm) nextNodeFromL:=Mm;

if (nextNodeFromL=M1) goto M1;

if (nextNodeFromL=Mm) goto Mm;

Common Block Structure: After every transformation step, we bring each
block in the program back into a structure where the structured elements ap-
pear before the unstructured guarded goto-statements. After pre-calculation,
the program is in this structure. The invoke L and the first set of if-statements
with assignments for next NodeFromL are the structured part. We will call the
structured part of block L bodyL in the following steps.

Substitution and Elimination: Because there is no implicit control flow from
one block to another, we can replace all occurences of goto M with the complete
block M if block M does not itself contain a goto M:

L: bodyL; L: bodyL;
if (exprLl) goto Mi; if (exprLl) goto Mi;
if (exprLi) goto M; if (exprlLi) {
. bodyM;
if (exprlm) goto Mm; if (exprM1) goto Ni;
M: bodyM; if (exprMn) goto Nnj;
if (exprMi) goto Ni; }
if (exprMn) goto Nn; if (exprlm) goto Mm;

If-Distribution: With the substitution step, the label M together with all
goto M statements have been eliminated. However, we have lost the common
block structure. In order to regain it, we have to apply another step:

if (exprLi) { if (exprli) {
bodyM; bodyM;
if (exprMi) goto Ni; }

if (exprli & exprM1) goto Ni;
if (exprMn) goto Nn; ca
} if (exprli & exprMn) goto Nn;

Compiling Process Graphs into Executable Code 327

This step is only allowed if exprLi is not changed by bodyM. (Ammarguel-
lat introduces an additional variable because of the general applicability of her
method, but we will show below how to ensure in the special context of our
transformation that the logic is not changed by if-distribution.)

After substitution and if-distribution, we can move the structured parts of
the source and the target block of the substitution together because the guards
of the if-statements are mutually exclusive owing to PM2. Note also that the
resulting guarded gotos are still mutually exclusive and complete.

Factorization: If the unstructured part of a block contains two guarded gotos
to the same label, the two statements can be combined into one:

L: bodyL; L: bodyL;
if (exprLl) goto Mi; if (exprLl) goto Mi;
if (exprLi) goto M; if (exprli | exprLj) goto M;
if (exprlLj) goto M; if (exprlm) goto Mm;

if (exprlm) goto Mm;

Derecursivation: Self-references have to be resolved through derecursivation
after moving the self-referencing goto to the top of the unstructured part:

L: bodyL; L: repeat {
if (exprLs) goto L; bodyL;
if (exprLl) goto Mi; } while (exprLs);

ce if (exprLl) goto Mi;
if (exprlm) goto Mm; cae
if (exprlm) goto Mm;

The complete repeat-while-loop becomes the new structured part bodyL for the
next step. Note also here that the guards of the unstructured gotos are still
complete and mutually exclusive, but may no longer form a logical tautology,
even if they did before. (After the loop, exprLs must be false, and therefore
exprL1V ...V exprLm, without exprLs, must be true.)

A repeat-while-loop with the test at the end can be converted into an ordinary
while-loop with the test at the beginning — as needed for BPEL4WS — but
requires the introduction of one additional variable per loop:

repeat { loopL:=true;
bodyL; while (loopL) {
} while (exprLs); bodyL;

loopL:=exprls;
3

328 Rainer Hauser and Jana Koehler

Obsolete-Guard-Removal: Because of PM1 the set of guarded gotos in any
block of the initial program is complete in the sense that every possible case
is covered. This property is preserved by all the transformation steps discussed
above. Therefore, if only one guarded goto is left in a block, the guard must be
true and can be removed:

L: bodyL; L: bodyL;
if (expr) goto M; goto M;

The Complete Algorithm for Reducible Process Graphs: These trans-
formation steps can be applied in different order. Before we describe in which
sequence the goto-elimination algorithm will apply them, we make some observa-
tions: (1) The derecursivation step can be applied to a block with self-references
at any time, but if it is applied right before it is substituted, the number of while-
loops is minimized. (2) Substituting a block for more than one goto-statement
leads to code duplication. (3) Blocks can be substituted in any order.

Ammarguellat proves that there is a substitution sequence for reducible
graphs where each block is only substituted once. This property together with
the observations above determines the sequence in which the various steps are
applied for reducible process graphs. The pre-calculation is the first step. Next,
one block after the other (except the blocks corresponding to the start and end
node in the graph) is selected in a loop for substitution such that there is only
one goto to the label of this block. In the loop, when we have selected a block,
we apply derecursivation if necessary and perform the substitution. With if-
distribution we bring the target block back into the common block structure,
and with factorization we reduce the number of gotos in a block to at most one
for each remaining label. If at this point only one guarded goto is left in a block,
it can be removed using the obsolete-guard-removal step. After elimination of
all labels and gotos with exception of the ones corresponding to the start and
end block, the label for the start node can be removed®. Next, the guard for
the remaining gotoT' can be removed with obsolete-guard-removal, the block
corresponding to the end node dissolves into an implicit exit at the end of the
program, and bodyS becomes the resulting program:

S: bodyS; bodyS;
if (expr) goto T:
T: exit;

The algorithm in pseudo-code is shown in Figure 8. Note that in a final step,
bodyS has to be converted into the simplified BPEL4WS encoding.

The result of the transformation algorithm applied to the upper thread in
Figure 2 is shown in Figure 9. For space reasons we cannot show larger exam-
ples, but we applied this algorithm to real-world business processes with very
promising results for the program structure. The method of Ammarguellat nicely

8 A start node has no incoming edges. If this restriction is relaxed, a derecursivation
step would remove all remaining gotos to the label of the start node.

Compiling Process Graphs into Executable Code 329

blocks «— preCalculation(processGraph)
while blocks\{start Block, endBlock} # () do
sourceBlock — select Block ForSubstitution(blocks\{startBlock, endBlock})
blocks «— blocks\{sourceBlock}
if sourceBlock € sourceBlock.gotoT argets then
derecursivation(source Block)
end if
for all targetBlock € blocks do
if sourceBlock € targetBlock.gotoTargets then
substitution(sourceBlock, target Block)
if Distribution(target Block)
factorization(target Block)
if | targetBlock.gotoTargets |= 1 then
obsoleteGuardRemoval(target Block)
end if
end if
end for
end while

Fig. 8. Goto-elimination algorithm.

structures the execution logic of the original graph but has the disadvantage of
duplicating code if the graph is irreducible.

Note also that this method — unlike the finite state machine translation — does
not preserve nondeterminism, because the guarded gotos (initially interpretable
as a set of Dijkstra’s guarded commands) get separated by substitution and
derecursivation. We finally mention without further elaboration that the two
transformation methods can be combined in various ways (e.g., by applying
the goto-elimination method until code duplication would be necessary, and
completing with the finite state machine method.)

Discussion of Additional Variables: The method described above works only
for reducible process graphs because the if-distribution can be dangerous as men-
tioned when we introduced the if-distribution step. In Ammarguellat’s original
method, if-distribution is safe but always adds a new variable to the program. Ad-
ditional variables must be meaningful for a reader of the program if the program
is intended to be read by a human user. The variable nextNode in the finite state
machine transformation method (Figure 7) and the variables next NodeFromX
as well as loopX in the goto-elimination transformation method (Figure 9) have
an obvious meaning®.

We outline a proof that if-distribution is legal if every substitution step re-
places only a single goto with a block (which is always possible for reducible
graphs). We define for each block of the initial program after the pre-calculation
step a set called Modi fies(block, step) that shows which variables can be modi-

9 Instead of a variable nextNodeFromX, we used a set of Boolean variables XY in
Figure 4 to express nextNodeF'romX =Y in an alternative, more compact form.

330 Rainer Hauser and Jana Koehler

<sequence>
<switch>
<case condition= ’exprSA’>
<assign ’nextNodeFromS:=A’ />
</case>
<case condition= ’exprSB’>
<assign ’nextNodeFromS:=B’ />
</case>
</switch>
<switch>
<case condition= ’nextNodeFromS=B’>
<sequence>
<invoke B />
<switch>
<case condition= ’exprBA’>
<assign ’nextNodeFromB:=A’ />
</case>
<case condition= ’!exprBA’>
<assign ’nextNodeFromB:=T’ />
</case>
</switch>
</sequence>
</case>
</switch>
<switch>
<case condition= ’nextNodeFromS=A
(nextNodeFromS=B & nextNodeFromB=A)’>
<sequence>
<assign ’loopA:=true’ />
<while condition= ’loopA’>
<invoke A />
<switch>
<case condition= ’exprAA’>
<assign ’nextNodeFromA:=A’ />
</case>
<case condition= ’!exprAA’>
<assign ’nextNodeFromA:=T’ />
</case>
</switch>
<assign ’loopA:=(nextNodeFromA=A)’ />
</while>
</sequence>
</case>
</switch>
</sequence>

Fig. 9. Goto-elimination transformation result.

fied by the body of block block in step step. Initially, the set is Modi fies(L,0) =
{nextNodeFromL} for each block L. If block M is substituted in block L in step
n, the set becomes Modifies(L,n) = Modifies(L,n—1)UModifies(M,n—1).
Because the problematic expression in the if-condition references only variables
in Modifies(L,n—1) and bodyM modifies only variables in Modi fies(M,n—1),
if-distribution is allowed if Modifies(L,n —1)N Modifies(M,n — 1) = 0. This
intersection can only be nonempty if a block N previously has been substituted
in blocks L and M.

The easiest solution to make if-distribution safe in the case of irreducible
graphs is what is called node-splitting in compiler theory. For each goto M in
the initial program, a copy of the block M is created with new labels M7, M
and so on. This leads to different additional variables nextNodeFromM;.

Compiling Process Graphs into Executable Code 331

4.4 Separation of Sequential and Concurrent Parts

The compilation of a single pair of ForkNode and JoinNode in the process graph
model into a Flow element in the executable code model is trivial if each thread
between them contains only one ExecutableNode. Based on this observation, we
outline an algorithm to decompose a process graph into sequential and concur-
rent subgraphs.

Areas of a process graph with only one edge leading from the outside into
the area and one edge leading from the area to the outside are of special interest
because they can be abstracted into a single node as a structured activity. The
incoming and the outgoing edge define the interfaces to such an abstractable
area or subgraph. A fork-join pair is called properly nested if all threads are such
abstractable areas, and their incoming edges come from the same fork, and the
outgoing edges lead to the same join. In the following paragraphs, we give formal
definitions that a reader may skip if satisfied with the informal descriptions.

We define a process graph G(N, E, n;, ny) with a set of nodes N, a set of edges
E, the InitialNode n; and the FinalNode ny as usual. We write e(n1,n2) for the
edge from ny € N tony € N. A subgraph G'(N’, E’) with N’ C N\ {n;,ns} and
Ve =e(ni,n2) € E(ny € N'Vng € N — e(n1,ng) € E') is called abstractable
if there exist two edges e(ni,n}) and e(ng,n5) in E’ such that ny € N\ N/,
njy € N', ng € N and n}, € N\ N’, whereas all the other edges in E’ lead from
a node in N’ to a node in N’. In other words, the subgraph contains all edges
between its own nodes, and there is exactly one edge coming in from outside and
exactly one edge going out. (For all process graphs G(N, E, n;, nys), the subgraph
G(N \ {ni,ns}, E) is an abstractable subgraph because there is one edge with
n; as source and one edge with ny as target.)

The source of the incoming edge of an abstractable subgraph G(N’, E’) dom-
inates all nodes in N’. Note also that if the original graph was valid, an ab-
stractable subgraph is also valid when completed with an additional InitialNode
and FinalNode to replace the source and target of the incoming and outgoing
edges, respectively.

To define when fork-join pairs are properly nested, we select one ForkNode
f, which must have at least two outgoing edges to be valid. We follow one of
them, come to node n; (the first node of thread i) and compute N;, the set
of nodes dominated by n;. We determine further the set of edges where source
and/or target belong to N; and call this set E;. We do this for all threads. If
G(N;, E;) for all threads 7 are abstractable subgraphs whose outgoing edges lead
to the same JoinNode j, which does not have any other incoming edge, then the
corresponding fork-join pair is properly nested.

The abstractable subgraph G(N;, E;) for each thread ¢ can be combined into
an abstract sequential node s; hiding all nodes in N; and all edges in E; except for
the incoming edge from f and the outgoing edge to j. The subgraph G(N|,)
with Ny = {f,j}UU;{s:} and B = U;{e(f,si),e(si,)} is also an abstractable
node, which can be combined into an abstract concurrent node.

By recursively combining threads into abstract sequential nodes and fork-join
pairs with already abstracted threads into abstract concurrent nodes, a complete

332 Rainer Hauser and Jana Koehler

valid process graph can be transformed into sequences and flows in the simplified
version of BPEL4WS.

5 Reverse Engineering of Process Graphs

The result of the two transformation methods can be decompiled back into a
process graph if its structure has not been modified manually. For the flows, this
is trivial. Thus, we only have to outline the decompilation of a sequence without
flows but possibly with abstract concurrent nodes hiding flows.

5.1 Reverse Finite State Machine Transformation

The initialization before the while-loop determines the start node and its sucessor
or successors with transition conditions. The loop-condition determines the end
node. The cases in the switch of the loop determine the successor or successors
for each node with transition conditions. Thus, we can obtain all edges with their
transition conditions and create the process graph. This is not very surprising
because a process graph can be interpreted as a graphical representation of a
finite state machine.

5.2 Reverse Goto-Elimination Method

Decompilation after the goto-elimination method is based on two observations.
First, substitution (together with if-distribution) adds an if-statement to the end
of the target block’s structured part, and derecursivation wraps a structured
part into a while-loop. Factorization affects only the unstructured part. Second,
if the conditions in the loops and if-statements are brought into disjunctive
normal form C; V...V C,, all C; are of the form nextNodeFromX; = X A
nextNodeFromXs = X3 A ... AnextNodeFromX,_1 = X,, and they all lead
from the same X; to the same X,,. Thus, these conditions encode possible paths
in the process graph from X; to X,,. Not all paths may be shown explicitly
because some conditions may have been eliminated by obsolete-guard-removal.

To reverse the goto-elimination method, the statements invoke X and the
variables nextNodeFromX are used to determine the ExecutableNodes with
their names, and the program is recursively brought back into the form it had
after the initial transformation and the pre-calculation step, which obviously
can be transformed into a process graph. The program — after conversion from
the simplified BPEL4WS back into the simple programming language with if-
statements and repeat-while-loops — becomes:

S: bodyS;
if (expr) goto T;
T: exit;

We set expr to true and mark it as temporary because it may have to be modified
in order to fulfill PM2 (reverse obsolete-guard-removal).

Compiling Process Graphs into Executable Code 333

Also for the reverse transformation, we keep the blocks in the common block
structure, and a block therefore has the form:

L: bodyL;
if (exprl) goto L1;

if (exprn) goto Ln;

The last statement in bodyL is either an invoke X, an if-statement or a repeat-
while-loop. If the last statement is not the only statement in body L, we split the
block into two blocks, one with all the statements except for the last one (rest),
and one with only the last statement (last):

L: rest;
if (expr) goto M;
M: last;

if (exprl) goto L1;

if (exprn) goto Ln;

We set expr again to true and mark it as temporary. The body of block M now
contains only one statement. If it is an Invoke X, we are done. If it is a loop,
we undo derecursivation:

M: repeat { M: body;
body; if (cond) goto M;
} while (cond); if (exprl) goto L1;

if (exprl) goto L1;
if (exprn) goto Ln;
if (exprn) goto Ln;

If the body of block M is an if-statement, we undo substitution:

N: ... N: ...
if (expr) goto M; if (expr & cond) goto M;
M: if (cond) { M: body;
body; if (exprl’) goto L1;
} ces
if (exprl) goto L1; if (exprn’) goto Ln;

if (exprn) goto Ln;

In order to determine exprl’, we have to undo if-distribution (i.e., remove the
conjunction with cond) and factorization (i.e., split disjunctions).

After each step, we have to rename previously introduced labels such that
the label for Invoke L is L, and the logical expressions marked as temporary
must be resolved if possible. For space reasons, we will not go into more details
of the reverse goto-elimination method.

334 Rainer Hauser and Jana Koehler

6 Summary and Outlook

This paper describes two methods for compiling process graphs into executable
code and vice versa. We concentrated on the algorithmic aspects of the trans-
formations between business process models and executable models with an em-
phasis on the implementation. Other aspects such as some background from
theoretical computer science and an alternative algorithm based on continua-
tion semantics are discussed in [15].

Transformation methods like the ones discussed here are a step in the direc-
tion of OMG’s MDA vision. However, the simplified models used to demonstrate
the transformations have to be extended to the full power of control and data
flow available in BPEL4AWS, including fine-grained synchronization between con-
current threads. Organizational models for roles and authorizations as well as
information models have to be included, together with additional deployment in-
formation. Only then will the completely automatic translation and deployment
of business processes encoded as BPEL4WS be possible.

As an intermediate step on the way to fulfilling the complete MDA vision,
the executable model may have to be refined manually before deployment. In
this case, reconciliation of business process models and executable models is
important in order to preserve manual changes on the side of the executable
models when the business process models are modified. The transformations from
the executable models back into the business process models is only one part, but
keeping track of the mapping between the elements in the two model sets is also
crucial. This has been recognized by the community discussing the upcoming
OMG Q/V/T standard for MOF 2.0 query, views and transformations [18].

The two models shown in Figures 1 and 3 as well as the not formally specified
intermediate model (the simple programming language used to describe the two
transformation methods) can be represented as MOF 2.0 models [19]. The Object
Constraint Language OCL [20], which is regarded as an important part of the
Q/V/T standard, is powerful enough — though rather verbose and difficult to
read — to specify the well-formedness constraints on a process graph to be valid.
Therefore, we can imagine that the final Q/V/T language will be capable of
defining complex transformations such as the ones described in this paper. There
are two reasons why this may not be the right way to go.

First, the examples in the Q/V/T proposals are all very simple, and there
is a big class of transformations needed in the MDA-space with a similar com-
plexity. A Q/V/T language designed for this class of problems can be made
simple, easy to use and purely declarative. If a Q/V /T language tries to solve
all possible transformation problems, it may become just another imperative,
general-purpose programming language. In the goto-elimination method, defin-
ing the mapping for process graph and executable code elements as well as the
transformation logic itself is far from being trivial.

Second, we are not sure how much of the transformations as described in this
paper will still be needed for MDA in the long run. To explain what we mean
we have to step back and examine why we are today where we are. Software
projects in general and business process or workflow projects in particular require

Compiling Process Graphs into Executable Code 335

bridging the gap between the customer (business people) and the IT team. These
two groups speak different languages and think in terms of different concepts.
Informal drawings have helped and still help them find a common understanding
to design such software systems. These graphical aids evolved into modeling
languages and have become quite mature by now. The fact that we can define
algorithms such as the ones discussed in this paper, which compile business
process models automatically into executable code, makes it clear that these
business process model languages are — or can be made — precise, complete and
formal enough, although there is no formally defined semantics for UML 2.0 yet.

Thus, why not develop formally defined semantics for these modeling lan-
guages — if not yet available — together with execution engines that allow de-
ployment and execution of business models directly [21]? If a model contains all
information needed to simulate it and to compile it automatically into orches-
tration languages, an appropriate execution engine should also be able to run
it. Efficiency may be a problem, and there are other open issues, but they may
be solved in the future. Thus, algorithms to transform unstructured cycles into
structured loops may in the long run disappear or only remain needed for anal-
ysis and validation purposes, and orchestration languages such as BPEL4WS
may turn out to be only an interim step on the way to directly deployable and
executable models.

Acknowledgments

We thank the anonymous reviewers for their encouraging comments and valu-
able suggestions, and Jochen Kiister, Shane Sendall, Markus Stolze and Michael
Walhler for their advice, which helped to improve this paper significantly.

References

1. OMG: Model-Driven Architecture (MDA). http://www.omg.org/mda/.

2. Uhl, A.: Model Driven Architecture Is Ready for Prime Time. IEEE Software 20(5),
September/October 2003, pp. 70-73.

3. Ambler, S.: Agile Model Driven Development Is Good Enough. IEEE Software
20(5), September/October 2003, pp. 71-73.

4. W3C: Web Services Activity. http://www.w3.org/2002/ws/.

5. OASIS: Business Process Execution Language for Web Services (BPEL4WS) 1.1.
http://www-106.ibm.com/developerworks/webservices/library /ws-bpel/. May 5,
2003.

6. W3C: Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl. March 15, 2001.

7. OMG: Unified Modeling Language 2.0. http://www.omg.org/uml/.

BPMI: BPMN 1.0 working draft. http://www.bpmi.org/.

9. White, S.: Process Modeling Notations and Workflow Patterns. In The Workflow
Handbook 2004. Fischer, L. (Ed.). Future Strategies Inc., Lighthouse Point, FL,
USA, 2004.

10. Aho, A. et al.: Compilers. Principles, Techniques, and Tools. Addison-Wesley, 1986.

®©

336

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Rainer Hauser and Jana Koehler

Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. Re-
port of 2nd OOPSLA Workshop on Generative Techniques in the context of Model
Driven Architecture, Anaheim, California, October 2003.
http://www.softmetaware.com/oopsla2003/czarnecki.pdf.

Karsai, G., Agrawal, A.: Graph Transformations in OMG’s Model-Driven Archi-
tecture. Proc. Applications of Graph Transformations with Industrial Relevance,
Charlotsville, Virginia, September 2003.

Heckel, R. et al.: Towards Automatic Translation of UML Models into Semantic
Domains. Proc. APPLIGRAPH Workshop on Application of Graph Transforma-
tion (AGT 2002), Grenoble, France, April 2002, pp. 11-22.

Wess, B.: Optimizing Signal Flow Graph Compilers for Digital Signal Processors.
Proc. 5th International Conference on Signal Processing Applications and Tech-
nology, Dallas, Texas, October 1994.

Koehler, J., Hauser, R.: Untangling Unstructured Cyclic Flows - A Solution based
on Continuations. Submitted for publication, 2004.

Ammarguellat, Z.: A Control-Flow Normalization Algorithm and Its Complexity.
Software Engineering 18(3), pp. 237-251, 1992.

Hecht, M.S., Ullman, J.D.: Flow Graph Reducibility. SIAM J. Comput. 1(2), pp.
188-202, 1972.

Gardner, T. et al.: A Review of OMG MOF 2.0 Query / Views / Ttransformations
Submissions and Recommendations Towards the Final Standard. Workshop on
MetaModelling for MDA, York, England, November 2003.

OMG: Meta Object Facility 2.0. http://www.omg.org/docs/ad/03-04-07.pdf.
Warmer, J., Kleppe, A.: The Object Constraint Language — Second Edition. Get-
ting Your Models Ready for MDA. Addison-Wesley, 2003.

Rumpe, B.: Executable Modeling with UML. A Vision or a Nightmare? In: Issues
& Trends of Information Technology Management in Contemporary Associations,
Seattle. Idea Group Publishing, Hershey, London, pp. 697-701. 2002.

